DOI QR코드

DOI QR Code

Enhancement of Biological Control of Botrytis cinerea on Cucumber by Foliar Sprays and Bed Potting Mixes of Trichoderma harzianum YC459 and Its Application on Tomato in the Greenhouse

  • Lee Sun-Kug (Division of Applied Life Sciences (BK21), Gyeongsang National University) ;
  • Sohn Hwang-Bae (Division of Applied Life Sciences (BK21), Gyeongsang National University) ;
  • Kim Geun-Gon (Institute of Technology Development, JGreen Inc.) ;
  • Chung Young-Ryun (Division of Applied Life Sciences (BK21), Gyeongsang National University)
  • Published : 2006.09.01

Abstract

Trichoderma harzianum YC459 (Th 459), isolated from sawdust compost, was effective in controlling cucumber and tomato gray mold caused by Botrytis cinerea under controlled and plastic film tunnel conditions. A water suspension of the wettable powder formulation of Th 459 significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by foliar spraying at all tested concentrations from $10^5\;to\;10^8$ colony forming unit (cfu)/ml in repeated experiments. The control efficacy was maintained at least seven days with the average control value of 70% in cucumber pot tests. Mixing one to eight grams of the granular formulation ($10^8cfu/g$ dry weight) of Th 459 into one liter nursery potting mix at seeding also significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by suppression of lesion formation three weeks after treatment. Application of mixing granular formulation at seeding in combination with foliar spraying during cultivation provided a more significant reduction $(P\leq0.05)$ of cucumber gray mold than granule mixing or leaf spray alone. The foliar spraying of the formulated wettable powder of Th 459 significantly $(P\leq0.05)$ reduced the infection of tomato fruits by B. cinerea as effective as the chemical fungicide, dichlofluanid, in three plastic film tunnel experiment trials. It is suggested that effective control of gray mold of cucumber and tomato can be provided by both treatment of Th 459 into potting mix and foliar spray through induction of systemic resistance and direct inhibition of the pathogen.

Keywords

References

  1. Agrios, G. N. 1997. Plant Pathology. Academic Press, New York, NY, USA 606 pp
  2. Altomare, C., Norvell, W. A,, Bjokman, T. and Harman, G. E. 1999. Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 65:2926-2933
  3. Choi, I. S., Chung, Y. R. and Cho, K. Y. 1995. Variations in phenotypic characteristics, pathogenicity and fungicide resistance of Botrytis cinerea, gray mold rot fungus, isolated from various host plants. Kor. J. Mycol. 23:246-256
  4. Chung, Y. R. and Hoitink, H. A. J. 1990. Interactions between thermophilic fungi and Trichoderma hamatum in suppression of Rhizoctonia damping-off in a bar compost-amended container medium. Phytopathology 80:73-77 https://doi.org/10.1094/Phyto-80-73
  5. Chung, Y. R., Shin, W. G. and Kang, S. W. 1993. Development of the microbial pesticide for controlling gray mold rot of greenhouse crops. Research Report. Rural Development Administration of Gyeongnam Province, Jinju, Korea. 24 pp
  6. Cook, R. J. and Granados, R. R. 1991. Biological control: making it work. In: Agricultural Biotechnology at the cross roads, ed. M. J. F. MacDonald, pp. 213-227. National Agricultural Biotechnology Council, Ithaca
  7. De Meyer, G., Bigirimana, J., Elad, Y. and Hofte, M. 1998. Induced systemic resistance in Trichoderma harzianum T39 and biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104:279-286 https://doi.org/10.1023/A:1008628806616
  8. Elad, Y. and Kapat, A.1999. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinered. Eur. J. Plant Pathol. 105: 177-189 https://doi.org/10.1023/A:1008753629207
  9. Elad, Y. 2000a. Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Sci. and Tech. 10:499-507 https://doi.org/10.1080/09583150050115089
  10. Elad, Y. 2000b. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protect. 19:709-714 https://doi.org/10.1016/S0261-2194(00)00094-6
  11. Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kisrhner, B., Rav-David, D., Bilu, A., Dag, A., Shafrr, S. and Elad, Y. 2004. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol. 110:361-370 https://doi.org/10.1023/B:EJPP.0000021057.93305.d9
  12. Grindle, M. 1981. Variations among field isolates of Botrytis cinerea in their sensitivity to antifungal compounds. Pest Sci. 12:305-312 https://doi.org/10.1002/ps.2780120308
  13. Gullino, M. L. 1992. Control of Botrytis rot of grapes and vegetables with Trichodenna spp. In: Biological control of plant diseases, ed. by E. C. Tjamos, G. C. Papavizas, and R. J. Cook, pp. 125-132, Plenum Press, New York
  14. Harman, G. E. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 84:377-393 https://doi.org/10.1094/PDIS.2000.84.4.377
  15. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species-Opportunistic, avirulent plant symbionts. Nature Rev. 2:1-14 https://doi.org/10.1038/nrmicro814
  16. Hjeljord, L. G., Stensvand, A. and Tronsmo, A. 2001. Antagonism of nutrient-activated conidia of Trichoderma harzianum (atroviride) P1 against Botrytis cinerea. Phytopathology 91:1172-1180 https://doi.org/10.1094/PHYTO.2001.91.12.1172
  17. Hjeljord, L. G., and Tronsmo, A. 2003. Effect of germination initiation on competitive capacity of Trichodenna atroviride P1 conidia. Phytothology 93:1593-1598 https://doi.org/10.1094/PHYTO.2003.93.12.1593
  18. Hongeycutt, E. W. and Banson, D. M. 2001. Formulation of binucleate Rhizoctonia spp. and biocontrol of Rhizoctonia solani on impatiens. Plant Dis. 85:1241-1248 https://doi.org/10.1094/PDIS.2001.85.12.1241
  19. Hong, C. X., Michailides, T. J. and Holtz, B. A. 1998. Effects of wounding, inoculum density, and biological control agents on post-harvest brown rot of stone fruits. Plant Dis. 82:1210-1216 https://doi.org/10.1094/PDIS.1998.82.11.1210
  20. Horst. L. E., Locke, J., Krause, C. R., McMahon, R. W., Madden, L. V. and Hoitink, H. A. J. 2005. Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes. Plant Dis. 89:1195-1200 https://doi.org/10.1094/PD-89-1195
  21. Kim, G. G. and Chung, Y. R. 2004. Colonization and degradation of senescent flowers of zucchini squash by Trichoderma harzianum YC459, a biocontrol agent of gray mold, Botrytis cinerea. J. Zhejiang Univ. 30:402 (Abstr.)
  22. Lewis, J. A. and Papavizas, G. C. 1985. Effect of mycelial preparations of Trichoderma and Gliocladium on populations of Rhzioctonia solani and the incidence of damping-off. Phytopathology 75:812-817 https://doi.org/10.1094/Phyto-75-812
  23. Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Tronsmo, A., Woo, S. L. and Di Pietro, A. 1993. Chitinolytic enzymes produced by Trichoderma harzianum: Antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302-307 https://doi.org/10.1094/Phyto-83-302
  24. Nelson, M. E. and Powelson, M. L. 1988. Biological control of gray mold of snap beans by Trichoderma hamatum. PIant Dis. 72:727-729 https://doi.org/10.1094/PD-72-0727
  25. Paulitz, T. C. and Belanger, R. R. 2001. Biological control in greenhouse systems. Ann. Rev. Phytopahtol. 39:103-133 https://doi.org/10.1146/annurev.phyto.39.1.103
  26. Redmond, J. C., Marois, J. J. and Macdonald, J. D. 1987. Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Dis. 71:799-802 https://doi.org/10.1094/PD-71-0799
  27. Singh, P. P., Shin, Y. C., Park, C. S. and Chung, Y. R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92-99 https://doi.org/10.1094/PHYTO.1999.89.1.92
  28. Sutton, J. C. and Peng, G. 1993. Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83:615-621 https://doi.org/10.1094/Phyto-83-615
  29. Yedidia, I., Benhamou, N. and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65:1061-1070
  30. Yedidia, I., Benhamou, N., Kapulnik, Y. and Chet, I. 2000. Idnuction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38:863-873 https://doi.org/10.1016/S0981-9428(00)01198-0

Cited by

  1. Comparison of Environmental-Friendly and Chemical Spray Calendar for Controlling Diseases and Insect Pests of Strawberry during Nursery Seasons vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.273
  2. Biocontrol Characteristics of Bacillus Species in Suppressing Stem Rot of Grafted Cactus Caused by Bipolaris cactivora vol.29, pp.1, 2013, https://doi.org/10.5423/PPJ.OA.07.2012.0116
  3. Effect of Microbial Agent on Control of Tomato Gray mold and Powdery mildew vol.16, pp.4, 2012, https://doi.org/10.7585/kjps.2012.16.4.364
  4. Synthesis of 1-isopropyl-3-acyl-5-methyl-benzimidazolone Derivatives and Their Antimicrobial Activity vol.14, pp.4, 2013, https://doi.org/10.3390/ijms14046790
  5. Antagonistic effect of two isolates ofTrichoderma harzianumagainst postharvest pathogens of tomato (Lycopersicon esculentum) vol.44, pp.7, 2011, https://doi.org/10.1080/03235400903266438