전북 광상의 납 동위원소 조성에 대한 고찰

Pb Isotopic Composition of the Ore Deposits Distributed in Jeonbuk Province

  • 정재일 (전북대학교 자연과학대학 지구환경과학과) ;
  • 박계헌 (부경대학교 환경.해양대학 환경지질과학과)
  • Chung Jae-Il (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Park Kye-Hun (Department of Environmental Geosciences, Pukyong National University)
  • 발행 : 2006.06.01

초록

전라북도 지방에 분포하는 번암, 동진, 적상 및 북창 광산에서 채취한 납광석광물에 대한 납 동위원소 분석을 실시하였다. 그 결과 광상별로 상당히 다른 납 동위원소 조성을 가짐을 확인하였다. 번암광산, 북창광산 및 동진광산의 납 동위원소값이 형성하는 선형변화는 그 기울기가 매우 급하기 때문에 연대로 해석하기는 곤란하며 이 광상들의 납은 주로 선캠브리아 기저지각과 중생대 화강암질암의 두 종류 단성분들로부터 유래하였을 가능성을 제기하였다. 광상의 형성시 이러한 근원물질들로부터 유래한 납의 혼합비율은 광상마다 상당히 다른 것으로 추정된다. 이는 광화작용시 존재했던 유체의 순환이 매우 국지적인 범위에서 제한적으로 이루어졌기 때문인 것으로 판단된다 동진 광상의 경우는 광상에 배태된 납의 근원이 상당부분 기저지각에서 용출된 것임을 시사하며, 광화작용시 화성암은 운광암으로서보다는 유체의 순환을 야기한 열원으로서 중요한 역할을 담당한 것으로 판단된다.

Pb isotopic compositions were determined from the ore deposits of Beonam, Dongjin, Jeoksang and Bukchang mines distributed within Jeolabuk-do. As a result, individual mine shows significantly different values of Pb isotopic compositions from each other. Pb isotopic values of the Beonam, Bukchang and Dongjin mines altogether from linear variation, but it is too steep to represent their formation age. Instead, such trend suggests that these ore leads were originated from binary mixing. Precambrian basement rocks and Mesozoic granitoids are suggested for such two end-members. The relative contribution of lead from each source seems to be quite different for each ore deposit, implying that the circulation of the ore-forming fluid was very localized when they were formed. In the case of Dongjin mine it seems significant portion of the ore leads were originated from the basement rocks, which suggests that related igneous rock seems to have acted as heat source to generate circulation of the fluid rather than the source of the ore-forming elements.

키워드

참고문헌

  1. 권성택, 이진한, 박계헌, 전은영, 1995, 단양 천동리 지역 옥천대/영남육괴의 접촉관계와 소위 화강암질 편마암의 Pb-Pb 연대. 암석학회지, 4, 144-152
  2. 김규봉, 최위찬, 1994, 한국지질도 (1 : 50,000) 함양도폭 및 설명서. 한국자원연구소, 16p
  3. 김정환, 정창식, 손영철, 고희재, 1997, 평창지역의 지질과 선캠브리아 화강암질암의 스트론튬, 니오디미움 및 납 동 위원소 조성. 지질학회지, 33, 27-35
  4. 박계헌, 1996, 무주지역 대리암의 Pb-Pb 연대. 암석학회지, 5, 84-88
  5. 박계헌, 노진환, 2000, 춘천 연옥의 기원에 관한 지구화학 적 연구. 암석학회지, 9, 53-69
  6. 박계헌, 장호완, 2005, 연화 및 장군 연-아연 광상의 Pb 동 위원소 조성 및 Pb의 근원: 선캠브리아 기저 지각 및 중 생대 화성암의 역할. 암석학회지, 14, 141-148
  7. 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질학회지, 29, 387-395
  8. 박계헌, 김동연, 송용선, 2001, 지리산 지역 차노카이트와 함티탄철석 회장암질암의 SM-Nd 광물연대 및 성인적 관 계. 암석학회지, 10, 27-35
  9. 박계헌, 송용선, 박맹언, 이승구, 류호정, 2000, 동북아시아 지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구 연대학적 연구: 1. 지리산 지역 변성암의 변성연대. 암석학회지, 9, 29-39
  10. 박계헌, 이호선, 정창식, 2005, 영남육괴 중부 김천, 성주 및 안의지역 화강섬록암의 스핀 U-Pb 연대. 암석학회지, 14, 1-11
  11. 박계헌, 이호선, 송용선, 정창식, 2006, 영남육괴 함양, 거 창 및 영주 화강암-화강섬록암의 스핀 U-Pb 연대. 암석학회지, 15
  12. 박천영, 박영석, 정연중, 1998, 번암-팔공광산 지역에 분포하는 화강암류의 Au 광화작용과 지구화학적 특성. 지구과학회지, 19, 425-438
  13. 시마무라, 1925, 한국지질도 (1 : 50,000) 진안도폭 및 설명 서. 조선총독부
  14. 이창신, 1994, 번암 금광상의 지화학 및 광화작용에 관한 연구. 한국자원공학회지, 31, 364-373
  15. 정재일, 김선영, 1996, 동진광산의 지질과 금은광화작용. 자원환경지질, 29, 395-405
  16. 정재일, 김선영, 나춘기, 이인성, E.M. Ripley, 1996, 북창 광상의 유체포유물 및 황안정동위원소 연구. 자원환경지 질, 29, 677-687
  17. 정재일, 이영엽, 나춘기, 이광식, 전서령, 1994, 전북 번암 광산의 금은광화작용에 관한 연구. 지구과학회지, 15, 459-469
  18. 정창식, 장호완, 1996, 중부 옥천 변성대의 화성, 변성 및 광화작용과 지구조적 연관성 연구(I): 보은지역 화강암류 의 암석화학과 동위원소 지구화학. 지질학회지, 32, 91- 116
  19. 정창식, 권성택, 김정민, 장병욱, 1998, 경상분지 북부에 분 포하는 온정리 화강암에 대한 암석화학적, 동위원소 지 구화학적 연구: 경상분지 다른 지역과 서남 일본 내대에 분포하는 백악기-제3기 화강암류와의 비교 고찰. 암석학회지, 7, 77-97
  20. 정창식, 길영우, 김정민, 정연중, 임창복, 2004, 영남육괴 북 동부 죽변 지역 선캠브리아 기반암류의 지구화학적 특징. 지질학회지, 40, 481-499
  21. 홍승호, 최위찬, 1978, 한국지질도 (1 : 50,000) 금산도폭 및 설명서. 한국자원연구소
  22. Chang, B.U., 1997, A study on the lead isotopic compositions of ore deposits and igneous rocks in the Gyeongsang Basin, Southeast Korea. PhD Thesis, Seoul National University, 100p
  23. Chang, B.U., Chang, H.W. and Cheong, C.S., 1995, Lead isotope study on lead-zinc ore deposits in the eastern and southern parts of the Gyeongsang Basin. Econ. Environ. Geol., 28, 19-24
  24. Chang, H.W., Cheong, C.S., Park, H.I. and Chang, B.U., 1995, Lead isotopic study on the Dongnam Fe-Mo starn deposit. Econ. Environ. Geol., 28, 25-31
  25. Cheong, C.-S., Kwon, S.-T. and Park, K.-H., 2000, Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precambrian Res., 102, 207-220 https://doi.org/10.1016/S0301-9268(00)00066-8
  26. Cheong, C.-S., Kwon, S.-T. and Sagon, H., 2002, Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the East Asian continental margin. The Island Arc, 11, 25-44 https://doi.org/10.1046/j.1440-1738.2002.00356.x
  27. Chung, J.-I., Na, C.-K., Lee, Y.-U., Jeon, S.-R. and Kim, S.- Y., 1995, Studies on the geology and geochemistry in the Beonam Mine, Korea. Econ. Environ. Geol., 28, 623-633
  28. Doe, B. R. and Stacey, J. S., 1974, The application of lead isotopes to the problems of ore genesis and ore prospect evaluation : A review. Econ. Geol., 69, 757-776 https://doi.org/10.2113/gsecongeo.69.6.757
  29. Doe, B. R. and Zartman, Z. E., 1979, Plumbotectonics, The Phanerozonic, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits. John Wiley, New York, 22-70
  30. Frei, R., Nagler, Th.F., Schonberg, R. and Kramers, J.D., 1998, Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity. Geochim. Cosmochim. Acta, 62, 1925- 1936 https://doi.org/10.1016/S0016-7037(98)00111-2
  31. Gulson, B. L., 1986, Lead isotopes in mineral exploation. Elsevier. New York, 245p
  32. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precam. Res., 122, 235-251 https://doi.org/10.1016/S0301-9268(02)00213-9
  33. Mabuchi, H., 1985, The lead isotope systematics in Asia and near East. Grant Report to the Ministry of Education, Science, and Culture, Japan, No. 58540375-59549377, 19p (in Japanese)
  34. Nie, F.-J., Jiang, S.-H., Su, X.-X. and Wang, X.-L., 2002, Geological features and origin of gold deposits occurring in the Baotou-Bayan Obo district, south-central Inner Mongolia, People's Republic of China. Ore Geology Reviews, 20, 139-169 https://doi.org/10.1016/S0169-1368(02)00069-0
  35. Remus, M.V.D., Hartmann, L.A., McNaughton, N.J., Groves, D.I. and Fletcher, I.R., 2000, The link between hydrothermal epigenetic copper mineralization and the Cacapava Granite of the Brasiliano Cycle in southern Brazil. Jour. South American Earth Sci., 13, 191-216 https://doi.org/10.1016/S0895-9811(00)00017-1
  36. Rubinstein, N.A., Ostera, H.A., Mallimacci, H. and Carpio, F., 2004, Lead isotopes from Gondwana polymetallic ore vein deposits, San Rafael Massif, Argentina. Jour. South American Earth Sci., 16, 579-586
  37. Sagong, H. and Kwon, S.-T., 1998, Pb-Pb age and uplift history of the Busan gneiss comples in the Okcheon Belt, Korea: a comparison with the Bagdalryeong gneiss comples in the Kyeonki Massif. Geosciences Jour., 2, 99-106 https://doi.org/10.1007/BF02910488
  38. Sagong, H., Cheong, C.-S. and Kwon, S.-T., 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm- Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precam. Res., 122, 275-295 https://doi.org/10.1016/S0301-9268(02)00215-2
  39. Sasaki, A., 1987, Isotope systematics of ore leads from the Korean Peninsula and Japanese Islands. Mininig Geology, 37, 223-226 (in Japanese)
  40. So, C.-S., S.-T. Yun, S.-G. Choi, Y.-K. Koh and S.-J. Chi, 1991, Cretaceous epithermal Au-Ag mineralization in the Muju-Yeongam District(Jeonju minefalized area), Republic of Korea: galena-lead and stable isotope studies. J. Geol. Soc. Korea, 27, 569-586
  41. Tilton, G. R., 1983, Evolution of depleted mantle: the lead perspestive. Geochim. Cosmochim. Acta, 47, 1191-1197 https://doi.org/10.1016/0016-7037(83)90061-3
  42. Yoon, C.-H. and Kim, C.-B., 1999, Lead isotope study of some gold-silver deposits, Korea. Journal of the Korean Institute of Mineral and Energy Resources Engineering, 36, 419-427
  43. Zartman, R. E and Haines, S.M., 1988, The plumbotectonic model for Pb isotopic systemics among major terrestrial reserial reservoirs - a case for bi-directional transport. Geochim. Cosmochim. Acta, 1327-1339
  44. Zhai, M., Ni, Z., Oh, C.W., Gui, J. and Choi, S.G., 2005, SHRIMP zircon age of a Proterozoic rapakivi granite batholith in the Gyeonggi massif (South Korea) and its geological implications. Geol. Mag., 142, 23-30 https://doi.org/10.1017/S001675680400994X
  45. Zindler, A. and Hart, S.R., 1986, Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493-571 https://doi.org/10.1146/annurev.ea.14.050186.002425