ON AN IMPROVED UNIFIED CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF EULER–HALLEY TYPE METHODS

IOANNIS K. ARGYROS

ABSTRACT. Using more precise majorizing sequences than before [6], [10], [11], [14] we provide a finer semilocal convergence analysis for a certain class of Euler–Halley type methods for approximating a solution of an equation in a Banach space setting.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique solution x^* of a nonlinear equation

$$F(x) = 0$$

where F is a twice-Fréchet differentiable operator defined on a convex subset D of a Banach space X with values in a Banach space Y.

Let $\lambda \in [0,2]$ be a given parameter. We use the class of Euler–Halley type approximations given by

$$x_{n+1} = T_{F,\lambda}(x_n) = x_n + G_F(x_n) + H_{F,\lambda}(x_n) \ (x_0 \in D), \ (n \geq 0),$$

where

$$G_F(x) = -F'(x)^{-1}F(x)$$

$$Q_{F,\lambda}(x) = \left[I + \frac{\lambda}{2}F'(x)^{-1}F''(x)G_F(x)\right]^{-1},$$

and

$$H_{F,\lambda}(x) = -\frac{1}{2}F'(x)^{-1}F''(x)G_F(x)Q_{F,\lambda}(x)G_F(x)$$

for all $x \in D$.

Received by the editors March 30, 2006.

2000 Mathematics Subject Classification. 65G99, 65H10, 65B05, 47H17, 49M15.

Key words and phrases. Banach space, Euler–Halley iterative methods, majorizing sequence, Lipschitz condition, average Lipschitz function.
This class of approximations includes as special cases many cubically convergent methods: If \(\lambda = 0 \) we obtain the Euler method \([1], [2], [9], [10]\); if \(\lambda = 1 \) we get the Halley method \([2], [8], [10]\) whereas for \(\lambda = 2 \) method (1.2) reduces to the super-Haley method \([7], [10]\). A convergence analysis of method (1.2) has been given by us in [6], Gutierrez and Hernandez in [10], Han in [11] and more recently by Wang and Li [14] under various hypotheses that have certain advantages over each other.

In particular in the elegant paper by Wang and Li a unified convergence analysis was provided for method (1.2) using the concept of the average function. This idea has already been used in [12], [13] and in an improved way in [3]–[5] on Newton’s method.

Here we show that using more precise majorizing sequences than in [14] and under the same computational cost and the same or weaker hypotheses we can provide finer error bounds on the distances \(\|x_{n+1} - x_n\|, \|x_n - x^*\| (n \geq 0) \) and a more precise information on the location of the solution \(x^* \).

2. SEMILOCAL CONVERGENCE ANALYSIS OF METHOD (1.2)

Let \(x_0 \in D \) such that \(F'(x_0)^{-1} \in L(Y, X) \). Let \(R > 0 \). We denote by \(U(x_0, R) \) the ball \(U(x_0, R) = \{ x \in X \mid \|x - x_0\| < R \} \), whereas \(\overline{U}(x_0, R) \) the corresponding closed ball.

We need the definition [5], [12]:

Definition 2.1. An operator \(F'(x_0)^{-1}F'(x) \) satisfies the center Lipschitz condition in \(U(x_0, r) \) with \(L_0 \) average if

\[
(2.1) \quad \|F'(x_0)^{-1}[F'(x) - F'(x_0)]\| \leq \int_0^{\|x - x_0\|} L_0(u)du
\]

for some positive integrable function \(L_0 \) on \([0, R]\). Usually \(R \) is taken such that

\[
(2.2) \quad \int_0^R (R - u)L_0(u)du = R.
\]

Let \(r_0^* > 0 \) be such that

\[
(2.3) \quad \int_0^{r_0^*} L_0(u)du = 1
\]

and define

\[
(2.4) \quad b_0 = \int_0^{r_0^*} uL_0(u)du.
\]
For $\beta \in [0, b_0]$, define

$$h_0(t) = \beta - t + \int_0^t (t-u)L_0(u)du, \quad t \in [0, R].$$

We need the Lemma [5], [12]:

Lemma 2.2. The function h_0 nonincreasing in $[0, r_0^*]$ and nondecreasing in $[r_0, R]$. Moreover, if

$$\beta \leq b_0$$

$$h_0(\beta) > 0, h_0(r_0) = \beta - b_0 \leq b, \text{ and } h_0(R) = \beta > 0. \text{ That is, } h_0 \text{ has a unique zero in } [0, r_0] \text{ denoted by } r_1^* \text{ and a unique zero } r_2^* \text{ in } [r_0, R], \text{ satisfying}$$

$$\beta < r_1^* < \frac{r_0^*}{b_0} \beta < r_0^* < r_2^* < R$$

when $\beta < b_0$ and $r_1^* = r_2^*$ when $\beta = b_0$.

We also need the following Lemmas:

Lemma 2.3 ([5]). If operator $F'(x_0)^{-1}F$ satisfies (2.1) in $U(x_0, r)$ with L_0 average and $r > r_0^*$. Then for each $x \in U(x_0, r_0^*)$, $F'(x)^{-1} \in L(Y, X)$ and

$$\|F'(x)^{-1}F'(x_0)\| \leq \left[1 - \int_0^{\|x-x_0\|} L_0(u)du\right]^{-1}$$

Proof. In view of (2.1) we get

$$\|F'(x_0)^{-1}[F'(x) - F'(x_0)]\| \leq \int_0^{\|x-x_0\|} L_0(u)du < 1.$$

It follows by (2.9) and the Banach Lemma on invertible operators [2] that $F'(x)^{-1} \in L(Y, X)$ and (2.8) holds true.

That completes the proof of Lemma 2.3.

Lemma 2.4 ([5], [12]). Let $\beta = \|F'(x_0)^{-1}F(x_0)\| \leq b_0$. Assume that $r_1^* < r < r_2^*$ if $\beta < b$, or $r = r_1^*$ if $\beta = b_0$. If operator $F'(x_0)^{-1}F$ satisfies (2.1) in $U(x_0, r)$ with L_0 average, the equation $F(x) = 0$ has a unique solution

$$x^* \in \overline{U}(x_0 - F'(x_0)^{-1}F(x_0), r_1^* - \beta) \subset \overline{U}(x_0, r_1^*).$$

Lemma 2.5. Assume that

$$\|F'(x_0)^{-1}F''(x_0)\| = L_0(0)$$

$$\|F'(x_0)^{-1}[F''(x) - F''(y)]\| \leq L(\|x-x_0\| + \|x-y\|) - L(\|y-x_0\|)$$
for all $y \in \bar{U}(x_0, r), \ x \in \bar{U}(y, r - \|y - x_0\|)$, and some positive integrable function L on $[0, R]$. Then, for each $x \in U(x_0, r_0)$

$$\|F'(x_0)^{-1}F''(x)\| \leq h''(\|x - x_0\|),$$

where,

$$h(t) = \beta - t + \int_0^t (t - u)L(u)du, \quad t \in [0, R]$$

and

$$\|F'(x)^{-1}F'(x_0)\| \leq -\frac{1}{h'_0(\|x - x_0\|)}.$$

Proof. In view of (2.11) and (2.12) it follows

$$L_0(u) \leq L(u), \quad u \in [0, R]$$

and $\frac{L(u)}{L_0(u)}$ can be arbitrarily large [1], [2]. Using (2.11), (2.12), (2.14) and (2.16) we obtain in turn

$$\|F'(x_0)^{-1}F''(x)\| = \|F'(x_0)^{-1}[F''(x) - F''(x_0)] + F''(x_0)\|$$

$$\leq \|F'(x_0)^{-1}[F''(x) - F''(x_0)]\| + \|F'(x_0)^{-1}F''(x_0)\|$$

$$\leq L_0(0) + L(\|x - x_0\|) - L(0)$$

$$\leq L(0) + L(\|x - x_0\|) - L(0) \leq h''(\|x - x_0\|),$$

which shows (2.13).

Estimate (2.15) follows immediately from (2.5) and (2.8).

That completes the proof of Lemma 2.5. \[\square\]

Remark 2.6. If equality holds in (2.16) then our results reduce to the corresponding ones in [14]. Otherwise they constitute an improvement. Indeed, let

$$b = \int_0^{r_0} uL(u)du$$

where r_0 is such that

$$\int_0^{r_0} L(u)du = 1.$$

If

$$\beta \leq b$$
denote the corresponding zeros of h by r_1 and r_2. It then follows by (2.3)–(2.5), (2.14), (2.18) and (2.19) that under (2.6) and (2.20) the following hold true:

\begin{align*}
(2.21) & \quad r_0 < r_0^* \\
(2.22) & \quad r_1^* < r_1 \\
(2.23) & \quad r_2 < r_2^* \\
\end{align*}

and

\begin{equation}
(2.24) \quad b < b_0.
\end{equation}

That is we obtain a better information on the location of the solution and wider upper bound on $\|F'(x_0)^{-1}F(x_0)\|$.

Let $\{t_n\}$ be the majorizing sequence for $\{x_n\}$ given by

\begin{equation}
(2.25) \quad t_{n+1} = T_{h,\lambda}(t_n) \quad (n \geq 0).
\end{equation}

Define scalar sequence $\{s_n\} \ (n \geq 0)$ as $\{t_n\}$ but with $h(t_n)^{-1}$ replaced by $h_0^{-1}(t_n)$ $(n \geq 0)$. If equality holds in (2.16) then $s_n = t_n \ (n \geq 0)$. Otherwise it can easily be seen using induction on $n \geq 0$

\begin{align*}
(2.26) & \quad s_n < t_n \\
(2.27) & \quad s_{n+1} - s_n < t_{n+1} - t_n \\
(2.28) & \quad s^* = \lim_{n \to \infty} s_n \leq r_1 = \lim_{n \to \infty} t_n \\
\end{align*}

and

\begin{equation}
(2.29) \quad s^* - s_n \leq r_1 - t_n.
\end{equation}

Note that under (2.20) scalar sequence $\{t_n\}$ is nondecreasing and converges to r_1 (see Lemma 2.2 in [14]). Therefore under the same condition (2.20) scalar sequence $\{s_n\}$ is also nondecreasing and converges to s^*.

Let us also define scalar sequence

\begin{equation}
(2.30) \quad u_{n+1} = T_{h_0,\lambda}(u_n) \quad (n \geq 0).
\end{equation}

It follows that under (2.6) $\{v_n\}$ is nondecreasing and converges to r_1^*. By comparing sequences $\{v_n\}$ and $\{s_n\}$ we deduce

\begin{align*}
(2.31) & \quad v_n \leq s_n \\
(2.32) & \quad v_{n+1} - v_n \leq s_{n+1} - s_n \\
(2.33) & \quad r_1^* \leq s^*.
\end{align*}
and

\[(2.34) \quad r_1^* - v_n \leq s^* - s_n,\]

although \(\{v_n\}\) is not a majorizing sequence for \(\{x_n\}\).

We can now state the main unifying result for method (1.2):

Theorem 2.7. Assume for \(r > r_1^*\) conditions (2.11), (2.12) hold true on \(\overline{U}(x_0, r)\). If

\[(2.35) \quad \beta \leq b_0\]

then sequence \(\{x_n\}\) generated by method (1.2) is well defined, for all \(\lambda \in [0, 2]\), remains in \(U = \overline{U}(x_0 - F'(x_0)^{-1}F(x_0), r_1^* - \beta)\) and converges to a solution \(x^* \in U\).

Moreover, for \(r \in [r_1^*, r_2^*]\) if \(\beta < b_0\) and \(r = r_1^*\) if \(\beta = b_0\), the equation \(F(x) = 0\) has a unique solution in \(\overline{U}(x_0, r)\). Furthermore the following estimates hold true for all \(n \geq 0:\)

\[(2.36) \quad \|x_{n+1} - x_n\| \leq s_{n+1} - s_n\]

and

\[(2.37) \quad \|x_n - x^*\| \leq s^* - s_n.\]

Proof. It follows exactly as Theorem 3.1 in [14] with the only crucial difference that we are using sharper (2.15) instead of

\[(2.38) \quad \|F'(x)^{-1}F'(x_0)\| \leq -\frac{1}{h'(\|x - x_0\|)}\]

used in [14] and majorizing sequence \(\{s_n\}\) instead of \(\{t_n\}\).

That completes the proof of Theorem 2.7.

Remark 2.8. Another way of improving the results in [14] is to consider the approximation (see Lemma 3.1 in [14] or [6] or [10]):

\begin{align*}
F(x_{n+1}) &= \frac{1}{2} F''(x_n) \{(2 - \lambda) G_F(x_n) + H_{F, \lambda}(x_n)\} H_{F, \lambda}(x_n) \\
(2.39) &\quad + \int_0^1 \{F''(x_n + \theta(x_{n+1} - x_n)) - F''(x_n)\}(1 - \theta) d\theta (x_{n+1} - x_n)^2
\end{align*}

and the corresponding iteration \(\{w_n\}\) given by

\[(2.40) \quad w_0 = 0, \quad w_1 - w_0 = \|x_1 - x_0\|, \quad w_{n+2} = w_{n+1} + \overline{T}_{h_0, h, \lambda}(w_{n+1}),\]
where,

\begin{equation}
T_{h_0, h_\lambda}(w_{n+1}) = \frac{\varepsilon_{n+1}}{-h'_0(w_{n+1})},
\end{equation}

and

\begin{equation}
\varepsilon_{n+1} = \frac{1}{2} h''(w_{n+1}) \left\{ (2 - \lambda) G_h(w_{n+1}) + H_{h, \lambda}(w_{n+1}) \right\} H_{h, \lambda}(w_{n+1})
+ \int_0^1 [L(w_n + \theta(w_{n+1} - w_n)) - L(w_n)] (1 - \theta) d\theta (w_{n+1} - w_n)^2.
\end{equation}

It follows from the proof of the theorem that \(\{w_n\} \) is the finer majorizing sequence for \(\{x_n\} \) such that

\begin{align*}
(2.43) & \quad w_n \leq s_n \\
(2.44) & \quad w_{n+1} - w_n \leq s_{n+1} - s_n \\
(2.45) & \quad w^* = \lim_{n \to \infty} w_n \leq s^*
\end{align*}

and

\begin{equation}
(2.46) \quad w^* - w_n \leq s^* - s_n.
\end{equation}

Therefore if one finds sufficient convergence conditions for sequence \(\{w_n\} \) weaker than the ones given in our Theorem 2.7 or Theorem 3.1 in [14] then the results obtained here or in [14] can be improved even further. We note that sufficient convergence conditions for scalar sequences more general than (2.40) have already been given by us in [1], [2]. Therefore we do not write down explicitly those conditions. Instead we refer the motivated reader to [1], [2].

Remark 2.9. In view of (2.11) there exists a positive integrable function \(L_1 \) on \([0, R]\) such that

\begin{equation}
(2.47) \quad \|F'(x_0)^{-1}(F''(x) - F''(x_0))\| \leq L_1(\|x - x_0\|) - L_1(0)
\end{equation}

for all \(x \in \overline{U}(x_0, r) \).

Clearly

\begin{equation}
(2.48) \quad L_1(u) \leq L(u)
\end{equation}

holds and \(\frac{L(u)}{L_1(u)} \) can be arbitrarily large [1], [2]. If \(L_1 \) replaces \(L_0 \) in condition (2.5), (2.11) then if we denote the new \(h \) function by \(h_1 \) we again get

\begin{equation}
(2.49) \quad \|F'(x)^{-1}F'(x_0)\| \leq \frac{1}{h'_1(\|x - x_0\|)}.
\end{equation}
Indeed by Taylor’s formula,

\[F'(x) = F'(x_0) + F''(x_0)(x - x_0) \]

\[+ \int_0^1 \left[F''(x_0 + t(x - x_0)) - F''(x_0) \right] dt(x - x_0) \]

which leads to the estimate

\[\|F'(x_0)^{-1}(F'(x) - F'(x_0))\| \leq L_1(0)\|x - x_0\| \]

\[+ \int_0^1 \|F''(x_0 + t(x - x_0)) - F''(x_0)\| \|x - x_0\|dt \]

\[\leq \int_0^{\|x - x_0\|} L_1(u)du < 1. \]

(2.51)

It follows from (2.51) and the Banach Lemma on invertible operators that $F'(x)^{-1}$ exists so that (2.49) holds true. That is all the results obtained here hold with L_1 replacing L_0. Note however that although L_1 connects better than L_0 to L it follows from (2.1) and (2.51) that L_1 may be chosen at least as small as L_0.

We now complete this study with an example to show that (2.16) and (2.48) can hold as strict inequalities:

Example 2.10. Let $X = Y = \mathbb{R}$, $x_0 = 0$, $D = [-1, 1]$ and define function F on D by

\[F(x) = e^x - 2x + c \]

for some constant c. It can easily be seen that (2.1), (2.12), and (2.47) hold for

\[L_0(u) = L_1(u) = (e - 1)u, \quad \text{and} \quad L(u) = eu. \]

(2.53)

Moreover in view of (2.53) we get

\[L_0(u) = L_1(u) < L(u) \quad \text{for all} \quad u \in [0, R]. \]

(2.54)

Other choices for the “L” functions can be found in [3]–[7], [10], [14] and the references there.

References

Cameron University, Department of Mathematical Sciences, Lawton, OK 73505, USA

Email address: iarbyros@cameron.edu