REMARKS ON THE RADIAL SOLUTIONS OF THE SELF-DUAL ABELIAN CHERN-SIMONS MODEL

KYUNGWOO SONG

ABSTRACT. We consider the nonrelativistic limit for the radial solutions to the self-dual equations in the self-dual Abelian Chern-Simons model. We achieve the limit by fixing the common maximum value of solutions.

1. INTRODUCTION

Let us consider the following equation which arises from the relativistic self-dual Abelian Chern-Simons model in \mathbb{R}^2 [7, 10]:

\begin{equation}
\Delta u = \frac{4q^4}{\kappa^2c^4} e^u(e^u - \sigma^2) + 4\pi \sum_{j=1}^{k} n_j \delta_{p_j},
\end{equation}

\[u \to -\infty \quad \text{as} \quad |x| \to \infty. \]

Here, $\kappa > 0$ is the Chern-Simons coupling constant, q is the charge of electron, $\sigma > 0$ is the symmetry breaking parameter, and c is the speed of light. The vortex points p_1, \ldots, p_k are distinct in \mathbb{R}^2, n_1, \ldots, n_k are positive integers, and δ_{p_j} denotes the Dirac measure concentrated on the point p_j. The existence and properties of solutions to (1.1) have attracted much attention and some results can be found in [1, 3, 4, 5, 12]. See also [13] for the results on the other boundary conditions.

In this paper, we are interested in the limit $c \to \infty$ for the solutions to (1.1), which is called the nonrelativistic limit. Considering the Lagrangian density of the relativistic Abelian Chern-Simons model, we find the mass of the scalar Higgs field is $m = \hbar q^2 \sigma^2 / \kappa c^3$, where \hbar is the Plank constant (see [6, 7, 10] for more information). We will accompany the limit $c \to \infty$ with m fixed. To this end, we set

$\kappa c = \text{constant} =: \mu$.

Received by the editors April 14, 2006 and, in revised form, June 28, 2006.

2000 Mathematics Subject Classification. 81T13, 35B40.

Key words and phrases. Abelian Chern-Simons models, self-dual equations, nonrelativistic limit.

Supported by the Kyung Hee University Research Fund in 2006.

\[\kappa = \frac{\mu}{c} \quad \text{and} \quad \sigma = c \sqrt{\frac{m \mu}{h q^2}}, \]

which give a difference from the method in [9]. Indeed, in [9], not only \(m \) but also \(\kappa \) is kept fixed and only \(\sigma \) varies in the limit \(c \to \infty \). Then the matter part of the nonrelativistic Lagrangian contains the constant \(c \), which yields difficulties in proving the nonrelativistic limit by mathematical arguments. To overcome this, we vary both \(\kappa \) and \(\sigma \) as (1.2) in the limit \(c \to \infty \) (see [6] for more information).

If we set \(\nu = u + \ln 2m \), then (1.1) becomes

\[\Delta \nu = \frac{q^4}{m^2 \kappa^2 c^4} e^{\nu v} (e^{2\nu} - 2m \sigma^2) + 4\pi \sum_{j=1}^{k} n_j \delta_{p_j} \]

\[= \frac{q^4}{m^2 \kappa^2 c^4} e^{2\nu} - \frac{2q^2}{\hbar \mu} e^{\nu} + 4\pi \sum_{j=1}^{k} n_j \delta_{p_j}. \]

Letting \(c \to \infty \), we may derive formally that \(\nu \) converges to a solution of

\[\Delta w = -\frac{2q^2}{\hbar \mu} e^{w} + 4\pi \sum_{j=1}^{k} n_j \delta_{p_j}, \]

\[w \to -\infty \quad \text{as} \quad |x| \to \infty. \]

This is the well-known Liouville equation with singular sources and appears in the nonrelativistic self-dual Abelian Chern-Simons model [8, 9].

It is known that there are infinitely many solutions of (1.3). See [1, 3, 4, 12] for example. Therefore it is not surprising that there may be a sequence of solutions to (1.3) which blows up as \(c \to \infty \) instead of converging to a solution to (1.4). In this point of view, it is important to find a sequence of solutions to (1.3) converging to a solution to (1.4). This means we need a kind of conditions for solutions of (1.3) to make sure the convergence in the limit \(c \to \infty \). In [6], the authors consider such a condition for radial solutions when there is only one-vortex point. They fix a shooting constant for radial solutions in the limit \(c \to \infty \) to prove the nonrelativistic limit. In this paper, we consider a different condition for radial solutions to guarantee the limit. In fact, we will show that if we choose a sequence of radial solutions to (1.3) with the common maximum value, then it converges to a solution to (1.4). In the next section, we prove this statement and establish the nonrelativistic limit.
2. Main Theorem

In this section, we assume that there is only one-vortex point. In this case, the equations (1.3) and (1.4) are rewritten as

\[
\Delta v = \frac{q^4}{m^2 \kappa^2 c_4} e^v (e^v - 2m \sigma^2) + 4\pi N \delta_0, \\
v \to -\infty \text{ as } |x| \to \infty, \tag{2.1}
\]

and

\[
\Delta w = -\frac{2q^2}{h\mu} e^w + 4\pi N \delta_0, \\
w \to -\infty \text{ as } |x| \to \infty. \tag{2.2}
\]

We are interested in the radial solutions to (2.1) and (2.2).

To investigate (2.1) and (2.2) further, we first transform the equation (2.2) into

\[
w_{rr} + \frac{1}{r} w_r = -\frac{2q^2}{h\mu} e^w, \quad r = |x| > 0 \tag{2.3}
\]

with the constraint

\[
\lim_{r \to 0} \frac{w(r)}{\ln r} = \lim_{r \to 0} r w_r(r) = 2N, \quad \lim_{r \to \infty} w(r) = -\infty. \tag{2.4}
\]

It follows from the result of [2, 11] that every radial solution to (2.3) with (2.4) is of the form

\[
w(r) = \ln \left\{ \frac{8\lambda(N + 1)^2 r^{2N}}{\lambda + r^{2N+2}} \right\} - \ln \frac{2q^2}{h\mu}, \tag{2.5}
\]

where \(\lambda\) is any positive constant.

Similarly, for (2.1) we get

\[
v_{rr} + \frac{1}{r} v_r = \frac{q^4}{m^2 \kappa^2 c_4} e^v (e^v - 2m \sigma^2) =: g(v) \tag{2.6}
\]

with the constraint

\[
\lim_{r \to 0} \frac{v(r)}{\ln r} = \lim_{r \to 0} r v_r(r) = 2N, \quad \lim_{r \to \infty} v(r) = -\infty. \tag{2.7}
\]

Concerning to (2.6) and (2.7), we have one parameter family of radial solutions by the result of [12] as follows:

Theorem 1 ([12]). For any number \(\alpha \leq \ln m \sigma^2\), there exist a number \(r_0 = r_0(\alpha)\) and a solution \(v(r) = v(r; \alpha)\) to (2.6) and (2.7) satisfying \(v(r_0) = \alpha, \ v_r(r_0) = 0\). Moreover, \(\alpha\) is the unique maximum value of \(v(r; \alpha)\).
In [12] Theorem 1 was proved under the conditions \(c = q = \sigma = 1 \) and \(m = 1/2 \) for simplicity. In the following, we give a sketch of its proof keeping all the constants for later use.

Sketch of Proof of Theorem 1. Let \(\alpha \leq \ln m\sigma^2 \) be fixed. By an elementary ODE argument, one can show that for any \(r_0 \in \mathbb{R}^+ \), there exists a unique global solution \(v(r) = v(r; r_0, \alpha) \) to (2.6) with initial data \(v(r_0) = \alpha \), \(v_r(r_0) = 0 \). Moreover, it holds that \(v(0) = -\infty = v(\infty) \), \(v_r(r) > 0 \) for \(r < r_0 \), and \(v(r) \leq \alpha \) for all \(r > 0 \).

It remains to find a suitable \(r_0 \) such that \(v(r; r_0, \alpha) \) satisfies (2.7). To this end, let us define \(\eta(r_0, \alpha) = \lim_{r \to 0} rv_r(r; r_0, \alpha) \). Multiplying the inequality from (2.6)

\[
(2.8) \quad (rv_r)_r > -\frac{2q^4\sigma^2}{m\kappa^2 c^4} r e^v
\]

by \(rv_r + 2 \) and integrating it over \((r; r_0)\) for \(r < r_0 \), we obtain

\[
0 < rv_r(r; r_0, \alpha) < -2 + 2 \sqrt{1 + \frac{q^4\sigma^2}{m\kappa^2 c^4} e^{\alpha r_0^2} =: R(r_0, \alpha), \quad \forall r < r_0.}
\]

In particular,

\[
(2.10) \quad \eta(r_0, \alpha) < R(r_0, \alpha).
\]

Integrating (2.9) on \((r, r_0)\), we obtain

\[
\alpha + R(\ln r - \ln r_0) < v(r; r_0, \alpha) \leq \alpha \quad \text{for} \quad r < r_0.
\]

Since \(g \) defined in (2.6) is decreasing if \(v \leq \ln(m\sigma^2) \), we are led to

\[
\frac{1}{r} (rv_r)_r = g(v) < g(\alpha + R(\ln r - \ln r_0)).
\]

Since \(\alpha \leq \ln(m\sigma^2) \), the integration of the above inequality over \((0, r_0)\) yields that

\[
\eta(r_0, \alpha) > \frac{q^4}{m\kappa^2 c^4} e^{\alpha r_0^2} \left(\frac{2\sigma^2}{R + 2} - \frac{e^\alpha}{m(2R + 2)} \right)
\]

\[
> \frac{q^4\sigma^2 e^{\alpha r_0^2}}{2m\kappa^2 c^4} \left(1 + \frac{q^4\sigma^2}{m\kappa^2 c^4} e^{\alpha r_0^2} \right)^{-1/2} =: S(r_0, \alpha).
\]

Now let \(T_1 \) solve \(R(T_1, \alpha) = 2N \), namely,

\[
(2.12) \quad T_1 = T_1(\alpha) = \sqrt{N^2 + 2N} \frac{\sqrt{m\kappa c^2}}{e^{\alpha/2} q^2 \sigma}.
\]

Then by (2.10), \(\eta(T_1, \alpha) < 2N \). Similarly, let \(T_2 \) be a solution to \(S(T_2, \alpha) = 2N \). Then we have

\[
(2.13) \quad T_2 = T_2(\alpha) = \frac{2(2N^2 + N\sqrt{4N^2 + 1})^{1/2}}{q^2 \sigma e^{\alpha/2}} \sqrt{m\kappa c^2}.
\]
Obviously, \(T_1 < T_2 \). By virtue of (2.10) and (2.11), we find
\[
\eta(T_1, \alpha) < 2N < \eta(T_2, \alpha).
\]
Since \(\eta \) is continuous on \(r_0 \), there exists \(r_0 = r_0(\alpha) \in (T_1, T_2) \) such that \(\eta(r_0, \alpha) = 2N \), which completes the proof. \(\Box \)

Remark 1. It is easily shown that if \(v \) is a solution to (2.6) and (2.7), then \(v < \ln(2m\sigma^2) \) by the maximum principle. Theorem 1 shows the existence of solutions for \(\alpha = \sup v \leq \ln(m\sigma^2) \). It is still open whether there exists a solution with the property \(\ln(m\sigma^2) < \alpha < \ln(2m\sigma^2) \).

Now we proceed in the proof of nonrelativistic limit for the solutions given by Theorem 1. This theorem implies that for each \(c \) there are infinitely many solutions to (2.6) and (2.7). Thus, as mentioned at the end of the previous section, if we choose an arbitrary sequence of solutions as \(c \to \infty \), then it may diverge. For example, for any sequence \(c_n \to \infty \), if we choose a sequence \(\alpha_n \to -\infty \) and a sequence \(v_n \) of solutions with the maximum value \(\alpha_n \), then \(v_n \to -\infty \). Hence, we need an additional condition to make sure the convergence of solutions in the nonrelativistic limit. Although it seems not to be easy to find such a condition for a sequence of solutions to the general equation (1.1), it is not difficult to get a condition for radial solutions of Theorem 1 as we shall see.

From now on, we adopt the relation (1.2) and let \(\hbar, q, \mu, m > 0 \) be fixed and \(\alpha \in \mathbb{R} \) be given. Set
\[
\alpha_c = \ln m\sigma^2 = \ln \frac{\mu m^2 c^2}{\hbar q^2}.
\]
Since \(\alpha_c \to \infty \) as \(c \to \infty \), if \(c \) is sufficiently large, then there exists a solution to (2.6) and (2.7) satisfying Theorem 1 for \(\alpha \). Let us denote it by \(v(r, c) \). Then it follows from Theorem 1 that for a given large \(c > 0 \) there exists an \(r_0 = r_0(c) \) satisfying
\[
\begin{align*}
\{ & v(r_0, c) = \alpha, & v_r(r_0, c) = 0, \\
& \max_{r \in \mathbb{R}^+} v(r, c) = \alpha, & \lim_{r \to 0} r v_r(r, c) = 2N.
\end{align*}
\]
Furthermore, \(0 < T_1 \leq r_0 \leq T_2 \), where \(T_1 \) and \(T_2 \) are defined by (2.12) and (2.13). Using (1.2), we can rewrite \(T_1 \) and \(T_2 \) as
\[
\begin{align*}
T_1 &= \frac{\sqrt{N^2 + 2N \sqrt{\hbar \mu}}}{qe^{\alpha/2}}, \\
T_2 &= \frac{2(2N^2 + N\sqrt{4N^2 + 1})^{1/2} \sqrt{\hbar \mu}}{qe^{\alpha/2}}.
\end{align*}
\]
We observe that T_1 and T_2 are independent of c. The following Theorem completely characterizes the nonrelativistic limit concerning (2.3), (2.4), (2.6), and (2.7).

Theorem 2. Let $h,q,\mu,m > 0$ be fixed, N be a positive integer, and $\alpha \in \mathbb{R}$ be given. Let $v(r,c)$ be a solution to (2.6) and (2.7) satisfying (2.14) which is constructed by Theorem 1. Then, as $c \to \infty$, $v(r,c)$ converges to $w(r)$ which is a solution to (2.3) and (2.4). The function $w(r)$ is explicitly given by (2.5) with $\lambda = \lambda(\alpha)$ defined by

\begin{equation}
\lambda = \lambda(\alpha) = N^N(N + 2)^{N+2} \left(\frac{h\mu}{q^2}\right)^{N+1} e^{-\alpha(N+1)}.
\end{equation}

Moreover, if we set

\[
\tilde{v}(r,c) = v(r,c) - 2N \ln r, \quad \tilde{w}(r) = w(r) - 2N \ln r,
\]

then for any nonnegative integers k

\begin{equation}
\| \tilde{v} - \tilde{w} \|_{C^k(B_R)} = \| v - w \|_{C^k(B_R)} \to 0
\end{equation}
as $c \to \infty$, where B_R is the ball of radius R centered at the origin.

Proof. Let c_n be an arbitrary sequence such that $c_n \to \infty$. Set $r_n = r_0(c_n)$ and $v_n(r) = v(r,c_n)$. We split the proof into four steps.

Step 1. Convergence of v_n.

It follows from (2.6) that

\[
v_n(r) = \alpha + \int_{r_n}^r \frac{1}{s} \int_{r_n}^s \frac{q^4}{m^2\kappa^2 c_n^4} r e^{\nu_n} (e^{\nu_n} - 2m\sigma^2) \, dr \, ds.
\]

Since $0 < T_1 < r_n < T_2$ and T_1, T_2 are independent of c_n, we may assume that there exists a subsequence of \{r_n\}, still denoted by \{r_n\}, satisfying $r_n \to r_* \in [T_1, T_2]$. We note that

\[
|g(v_n)| \leq \frac{q^4}{m^2\kappa^2 c_n^4} (e^{2\alpha} + 2m\sigma^2 e^\alpha) = \frac{q^4}{m^2\kappa^2 c_n^4} e^{2\alpha} + \frac{2q^2}{h\mu} e^\alpha,
\]

which means that g is uniformly bounded for all r as $c_n \to \infty$. Therefore for any given $R_2 > R_1 > 0$, if $R_1 < r < R_2$,

\[
|v_n(r)| \leq |\alpha| + \left| \int_{r_n}^r \frac{1}{s} \int_{r_n}^s \tau g(v_n) \, dr \, ds \right| \leq C
\]

for some constant C dependent only on R_1 and R_2. Thus we have

\[
\sup_{[R_1, R_2]} |v_n(r)| \leq C,
\]
Since
\[
\sup_{\mathbb{R}^2} |\Delta v_n| = \sup_{\mathbb{R}^2} |g(v_n)| \leq C,
\]
we conclude that \(\|v_n\|_{W^{2,p}(B_{R_2}\setminus B_{R_1})} \leq C\) for all \(p > 1\). This implies that there exist a subsequence, denoted by the same notation, \(v_n\) and a function \(w \in W^{2,p}(B_{R_2}\setminus B_{R_1})\) such that \(v_n \to w \in C^{1,\beta}(B_{R_2}\setminus B_{R_1})\) for any \(\beta \in (0,1)\) as \(c_n \to \infty\). Moreover, it follows from the bootstrap argument that \(v_n \to w\) in \(C^k(B_{R_2}\setminus B_{R_1})\) for all nonnegative integers \(k\).

Step 2. Explicit form of \(w\).

Let us show that \(w\) is a solution to (2.3). Since
\[
g(v_n) = \frac{q^4}{m^2 \kappa^2 c_n^4} e^{2v_n} - \frac{2q^2}{\tilde{h}\mu} e^{v_n} \to -\frac{2q^2}{\tilde{h}\mu} e^w,
\]
\(w\) satisfies
\[
w(r) = \alpha + \int_{r_*}^r \frac{1}{s} \int_{r_*}^s \tau \left(\frac{-2q^2}{\tilde{h}\mu}\right) e^{w(\tau)} d\tau ds,
\]
which yields
\[
w_{rr} + \frac{1}{r} w_r = - \frac{2q^2}{\tilde{h}\mu} e^w, \quad r > 0
\]
with \(w_r(r_*) = 0, w(r_*) = \alpha\).

Next, we verify that \(w\) satisfies (2.4). Integrating (2.6) on \((0, r_n)\), we get
\[
-2N = \int_0^{r_n} \frac{q^4}{m^2 \kappa^2 c^4} re^{v_n}(e^{v_n} - 2m\sigma^2) dr.
\]
Taking the limit, we obtain
\[
2N = \int_0^{r_*} \frac{2q^2}{\tilde{h}\mu} re^w dr,
\]
which implies \(\lim_{r \to 0} rw_r = 2N\). Since \(w_r < 0\) for \(r > r_*\), there exists
\[
\gamma = \inf_{r > r_*} w(r) = \lim_{r \to \infty} w(r) \geq -\infty.
\]
If \(\gamma > -\infty\), we arrive at a contradiction:
\[
\infty > \lim_{r \to \infty} |w(r)| \geq -|\alpha| + \frac{2q^2 e^\gamma}{\tilde{h}\mu} \lim_{r \to \infty} \int_{r_*}^r \frac{1}{s} \int_{r_*}^s \tau d\tau ds = \infty.
\]
Hence \(w(\infty) = -\infty\) and (2.4) is proved.

As a consequence, \(w\) is a radial solution to (2.3) and (2.4). By (2.5), there exists \(\lambda > 0\) such that \(w\) is of the form
\[
w(r) = 2N \ln r - 2 \ln(\lambda + r^{2N+2}) + \ln 8\lambda(N + 1)^2 - \ln(2q^2/\tilde{h}\mu).
\]
It remains to show (2.16). Since $w_r(r_*) = 0$, we have

\begin{equation}
\lambda = \frac{N + 2}{N} r_*^{2N+2}. \tag{2.18}
\end{equation}

In addition, from $w(r_*) = \alpha$, we obtain

\[r_* = q^{-1} e^{-\alpha/2} \sqrt{N(N + 2) \hbar \mu}. \]

Now (2.16) is a consequence of substitution of this identity into (2.18).

Step 3. Convergence of \tilde{v}_n.

It is not difficult to show that \tilde{v}_n and \tilde{w} are smooth functions on \mathbb{R}^2. For instance, see Lemma 3.2 of [12]. We know from Step 1 that for any $0 < R_1 < R_2$

\[\| \tilde{v}_n - \tilde{w} \|_{C^k(B_{R_2} \setminus B_{R_1})} \to 0. \]

We will extend the convergence on any ball B_R for $R > 0$. From $(r(v_n)_r)_r = \tau g(v_n)$, we get

\[\tilde{v}_n(r) = \alpha - 2N \ln r_n + \int_{r_n}^r \frac{1}{s} \int_0^s \tau g(v_n) d\tau ds, \quad r > 0. \]

Since $|g(v_n)| \leq C$, we are led that for any $r \leq R$

\[\left| \int_{r_n}^r \frac{1}{s} \int_0^s \tau g(v_n) d\tau ds \right| \leq C_R, \]

which implies that $\sup_{B_R} |\tilde{v}_n| \leq C_R$. Since $\sup_{\mathbb{R}^2} |\Delta \tilde{v}_n| \leq C$, we conclude that $\| \tilde{v}_n \|_{W^{2,p}(B_R)} \leq C_R$ for all $p > 1$. Then as in the Step 1, we can show by the bootstrap argument that $\tilde{v}_n \rightarrow \tilde{w}$ in $C^k(B_R)$ for any nonnegative integers k.

Step 4. Convergence of the whole sequence.

Finally, the uniqueness of w implies that the convergence holds true for the whole sequence c_n. Since $\{c_n\}$ was an arbitrary sequence, we conclude that $\tilde{v}(r, c) \rightarrow \tilde{w}(r)$ as $c \rightarrow \infty$ in $C^k(B_R)$ for any $R > 0$.

Remark 2. We observe that λ is a decreasing function of α in (2.16), which implies that Theorem 2 completely characterizes the nonrelativistic limit for radial solutions of a one-vortex case. In other words, for each solution $w(r)$ to the nonrelativistic equations (2.3) and (2.4), we can find one parameter family of solutions $v(r, c)$ to the relativistic equations (2.6) and (2.7) such that $v(r, c) \rightarrow w(r)$ as $c \rightarrow \infty$. Indeed, $w(r)$ is determined by λ via (2.5) and the corresponding $v(r, c)$ converging to $w(r)$ can be realized by the common maximum value α given by (2.16).
REFERENCES

DEPARTMENT OF MATHEMATICS, KYUNG HEE UNIVERSITY, 1 HOEKI-DONG, DONGDAEMUN-GU, SEOUL 130-701, KOREA

Email address: kyusong@khu.ac.kr