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Exact Evaluation of a Sommerfeld Integral for the Impedance
Half-Plane Problem
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Abstract

In this paper, a Sommerfeld integral for an impedance half-plane is considered, which is one of classical problems
in electromagnetic theory. First, the integral is evaluated into two series representations which are expressed in terms
of exponential integral and Lommel function, respectively. Then based on the Lommel function expansion, an exact,
closed-form expression of the integral is formulated, written in terms of incomplete Weber integrals. Additionally, based
on the exponential integral expansion, an approximate expression of the integral is obtained. Validity of all formulations
derived in this paper is demonstrated through comparisons with a numerical integration of the integral for various

situations.
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I. Introduction

The problem is classic in the electromagnetic field
that an infinitesimal dipole radiates over a dielectric
half-plane. The exact solution to the problem was given
by Amold Sommerfeld at 1909", After his work, the
problem has been paid a significant attention to by
many researchers because of its significant importance
to many practical applications ranging from wave pro-
pagation model to full-wave analysis of RF circuit”]

"This work was supported by INHA UNIVERSITY Research Grant.,

In [3] the historical development of the mathematical
formulation is well discussed. The original formulation
contains so-called Sommerfeld integrals whose exact,
closed-form evaluation is not known yet. Hence many
techniques, both analytic and numeric, have been pro-
posed to efficiently calculate the integral, whose detail
descriptions can be found in [4].

Since the integrand of the Sommerfeld type integral
may be highly oscillatory, and decay very slowly, it is
very hard to accurately calculate that kind of integrals
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using a direct numerical integration technique such as
Gaussian quadrature. To rectify the difficulty, many nu-
merical methods have been proposed, and well dis-
cussed in [5]. One interesting approach is proposed by
Lindell et al, which is called as exact image theory™™
B They modified the original Sommerfeld integrand
into a more convenient form for a numerical purpose.
The modified integrand decays very fast for any
configuration of the source and the observation point.
For an impedance boundary problem, a similar for-
mulation is known whose numerical -efficiency is
verified™.

In this paper, the Sommerfeld integral occurring in
an impedance half-plane problem is exactly evaluated.
To formulate a closed form of the integral, first two
series representations of the integral are derived, and
then based on the series expansions, the closed form is
formulated. In Section 2 and 3, the two series ex-
pansions are derived, and their convergence properties
are investigated. Then in Section 4, the closed form is
formulated. All obtained formulations are numerically
verified for various cases in Section 5.

I. Formulation in Terms of Exponential Integral

When an infinitesimal dipole radiates over an impe-
dance half-plane as seen in Fig. 1, the dyadic Green’s
function contains several Sommerfeld type integralsm,
whose primitive form is given by
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Fig. 1. The geometry of an infinitesimal dipole that
radiates above an impedance half plane whose
normalized impedance is 7.
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where o=V (x—x)2+(y— )%, k= K-, ],
( - ), 1s Bessel function of the first kind of zero order,
and p=+k,py or k,/y Here 7 is the normalized
surface impedance. Using the Sommerfeld identity, (1)
can be evaluated into two parts as

o

kz_p ik (2+2) k
o kot p olke0e ' &, %o

thyr

= ; i 1 ik (z+2) k
=i =0 [y Tok,)e M dk,

2

dB

- - - - Series: Exponential integrai
<18 | - - - Series: Lommel function

20 Nume@l IntegraﬂonA
22 M
24 05 0 05 1
3
(a) Magnitude
o —
1 - - - - Series: Exponential integral
27 " - - - Sertes; Lemmel function
40 b - - S - - . .| — Numerical integration

-1 -0.:5 6 0:5 1
I
(b) Phase

Fig. 2. Comparisons of the series representation and
the numerical integration of the Sommerfeld
integral as a function of the imaginary part
of 7 with a fixed real part of 0.3 or 2,
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where 7=V (x—x)2+ (y—y)*+ (z— 2% The se-
cond integral in (2) can be converted to more con-

venient forms ™™ ag
*® th(z+2) k
g He e b,
oo ihyR'
— € — ¢
= lfo R' e dE (3)
. . ik . ’
—zp(z+z)fer ezp(2+z)d(z+z') (4)

where  R'=V (x—x)+(y—y)2+(z2—2 +jO°
The second integral in (3) is known as the exact image
representation of the Sommefeld integral for an im-
pedance half-plane, whose integrand is Laplace-type,
and thus decays very fast. Hence, the integral is appro-
priate for a numerical computation. Based on the above
relations, the Sommerfeld integral in (3) can be exactly
evaluated for two cases, p=0 and p=*#,. For p=0,
the second integral in (3) is used to obtain an exact

expression given by

o kR o  iky(zt+2 +i&)
—_; € —MEge— _ e
Zfo R ¢ Fdé= Zfo z+z i€ € @
=— B[ = iCk+ ) (24 2)]e ~#e+9) )

where E,(z) is exponential integral[m]. For the other

case p=k,, using (4) and a known integral identity,

[ fii_gz% dé=FE[— it/ 7+ &7,

the following equation can be obtained:

—iko(z-{-z')fe
r

——El[—-iko(r+z+z')]e*'—k"(z“') (6)

e thy(z+ 2 )d(Z‘l‘ Z/)

Except the two cases, a closed-form evaluation of (3)
is not known yet'".
To begin with, (4) is slightly modified as
= f zb(z+z) d(2+ z )
f zko(r+ 2+2)

Using a substitution, £=#»+2z+2, the above
integral is modified to

z(p—kv)(z+z),d(z+ 2)
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After some algebraic manipulations, the integral term
in (7) can be carried out analytically which is re-

presented in terms of exponential integral“ol as

ez‘—zL(k+p)5 o -
f_EanE
E, ol — —22(k+p)(r+ z+ z')]

(r+z+2)"
e~ e—zt .
where E,, ,(2)= fl F‘fdt for R(z)>0. After in-

serting the above equation into (7), I can be expressed

in a compact form as

== B Eeni® ®

where a=—4-(k—p) (r—z—2) and f=—% (k+ p)
(r+z+2"). For the two cases when the Sommer-
feld integral can be analytically evaluated( @=0), I can
be reduced to —Ei(8) from (8), which is equivalent to
(5) and (6).

To examine the convergence property of (8), the
ratio test can be used. If @, is defined as a"/n!Eu

(8), the test requires the behavior of —“*% as
n+l

n approaches infinity. Using a series expansion of
E,,(z)m], it is easy to show

E,(B) -8
n+1(B) n+1

for large =

Hence, the ratio of @,+1/ @, becomes zero as n goes
to infinity, which indicates that (8) absolutely converges
for all values of p and r.

To obtain an approximate but very accurate for-
mulation of (8), the following approximation for the
exponential integral can be substituted into (8)"7.

n(n—2z)
(z+ n)!

n
E (% |1+
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It is valid for a large n. Considering the first term
of the above approximation, / can be simply evaluated as
~_ B @1
I~—e MZO n! B+nt+1l

e*ﬁ
=*—W7(B+l,—d)

where r( @, x) is known as incomplete Gamma func-

tion",

M. Formulation in Terms of Lommel Function

In this session, another series representation of (3)

is obtained. After substituting En(z)=—-@_1—1),—
(=2)" 'E(2) for n>1" into (8), I

n=—-2
+e* Zo(n—s—2)!(——z)s
can be rewritten as
[=— El( B) 2 _(____gﬁ)__
=0 (n!
o pg—]
—_—p B __(n_—s_ll ne__ s
e nz:l = (n!)? (=8
The first summation of the above equation can be
simply evaluated as ]0(2\/7,[;’). To evaluate the second
double summation, first, the summation terms are
rearranged, and the summation direction is changed

from horizontal to vertical directions as

1 &0 (nl)?
_xat _(m—-1! o 2" _(n—2!
- Bt B e

The summation in the bracket of the above equation
can be written in terms of a generalized hypergeometric
function, given by | F,(1;n+1,n+1; —aﬁ)[w]. The
hypergeometric function can be converted into a trans-
cendental function known as Lommel function™”. The-
refore, the series is rewritten in terms of Lommel
function as

I=—E (B, @V ap)

i 1 Son-1 0(2‘/_0'23)
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Fig. 3. Comparisons of the exact formulation and the
numerical integration of the Sommerfeld inte-

gral as a function of the real and imaginary
parts of 7.

Using the ratio test, it can be simply shown that the
formulated series expansion absolutely converge again
for all values of p, and r. Since the Lommel function
grows fast with increasing » however, the two serieses
are much less efficient for a numerical purpose than the
previous series (8).

IV. Formulation in Terms of Incomplete
Weber Integral

Based on (10) and the integral representation of the

Lommel function, / can be evaluated into a closed form.

791



BEBRIKSERGEE 5178 $B85% 2006F8A

Using sm(z)=7” Y,,(z)fo #I(Ddt~ | he s
I [ ey (oa

mmation in (10) can be converted into an integral as

= 1 Sou_1 0(2‘/75)
L= X G-D1 (48)”
T 2 ap YO(Z\/_B) ]0(2)
=45 f ze
° —Jo(2V e Yo(z) (10)

where Y,(z) and Ji(z) are Bessel functions of the first
and second kind of order v, respectively.
The integrals in (10) can be expressed in terms of
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Fig. 4. Comparisons of the exact formulation and the
numerical integration of the Sommerfeld inte-
gral as a function of . For this computation,
two 7 values are considred for 7=-0.3+0.1i.
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Fig. 5. Comparison of the approximate, asymptotic
formulations and the numerical integration of
the Sommerfeld integral as a function of p.

incomplete Weber mtegralsm]
The incomplete Weber integrals are defined as

Q,(x, )= )v+1 ftv lf(t)e Mdl‘

(2x

Pz, 2)= [y e o

e
(Zx)v+1

where R(v)>—1, L=coe™ and 24— arg(x)|< /2.
Many properties of the functions can be found in [13].
Hence, (10) can be rewritten as

Qu(— 8.2V aP Y, (2V ap)
+{Py(— 8,2V aB) — Py(— B,0)}

IZ=__7Teﬂ

4

Py(~ B, 0) can be expressed in terms of exponential
intcgral“ol. Finally, I can be written in a simple closed
form as

@82V af) Yy (2 aB)
I=x
+{Py(— 8,2V apy+i} Jy(2V aB) (11)
where “+” for 3(B)>0 and “-” for I(F)<0.
Therefore, the Sommerfeld integral, (3) can be finally

expressed in terms of the incomplete Weber function as

*® 1 th(z+2) k
[
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] Q=82 B Y2V aB)
:n.eAzp(Zan)

+{Py(— 8,2V aP)=i} J,(2V aB)
(12)
V. Numerical Verification

In this section, the formulations, (8), (10), and (12)
obtained in the previous sections are verified by
comparing the results computed by the formulations,
and the direct numerical integration for various cases.
For the rest simulations, frequency is fixed to be 300
MHz, z+z'=0.1 m 1s assumed, and for a given 7, p is
calculated by ko 7. First, the validity of the two series
representations is examined. Fig. 2 shows plots of
results calculated by the two series expansions (8) and
(10), and the numerical integration. For this calculation,
o is fixed at 1 m. In this figure the real part of 7 is
fixed at 0.3 or 2, while the imaginary part is varied
from —1 to 1. The figure shows that the series repre-
sentations are in excellent agreement with the numerical
integration results.

To verify the exact representation first, the effect of
7 is examined. Fig. 3 shows the comparisons of the
results of the exact expression and the numerical
calculation for two cases: 1) a fixed imaginary part of
1, and varying real part and 2) a fixed real part of 0.3,
and varying imaginary part. As seen in the figure the
results of the analytical formulation are in excellent
agreement with the numerical results for all cases. For
this simulation, ©=1 m is assumed again. The next
figure shows the comparisons of results computed by
the numerical integration and (12) for two values of 7:
0.3-0.1;, and —0.3+0.1i. For a clear comparison, the
phase is plotted for a case, 7=-10.3+0.1i. The figures
show the formulation (12} can provide exact results for
any p, and r.

The final examination is the accuracy of the
approximate formulation. Fig. 5 shows a comparison of
the approximate, first-order asymptotic expressions and
the numerical calculation as a function of the radial

distance. For this calculation, two impedances are con-

€ T T :
: : ~——— Numrical
8F - ,f./.’:‘.'““,.\v‘...v.. - - - - Approximate F

12 - : =
%_14 e e PN \Am(n)'=>0.3””‘
: . : )

ABF¢ . S T \.
t : - :
. == B =1 ™
A8 LT S e T g B

0.5 1

0
I}

Fig. 6. Magnitudes of the approximate formulation
and the numerical integration of the Sommer-
feld integral as a function of the imaginary
part of 7 with a fixed real part of 0.3 or 1.

sidered: 7=0.3-0.1;, 1.5+i. The asymptotic express-
ion can be obtained using the conventional steepest
descent method(SDM) given by

k

i 1 th(242") Fp —
» g ke ik,
_; e ikyr 1
v kycosf+p

where cos @=(z+z')/r. As seen in the Fig. 5, the app-
roximate formulation is more accurate than the asymp-
totic one over the whole comparison range. Fig. 6
shows the effect of the impedance on the approximate
formulation. As seen in the figure, if the real part of
impedance is large, the accuracy of the approximate
formulation is satisfactory, while the real part is small,
the discrepancies between two results becomes large.
For this calculation, z+z'=0.1 m and © =] mare assu-
med.

VI. Conclusions

In this paper, two series representations of Sommer-
feld integral occurring for an impedance half-plane
problem are formulated. Based on one of the series
expressions, an exact, and closed-form expression of the
integral is obtained, which is written in terms of the
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incomplete Weber integrals. The obtained representa-
tions including the exact one are verified for various
cases by comparing results computed by the new for-
mulations and a direct numerical integration technique.
The comparisons show the derived equations are valid
for any values of the surface impedance(7) and the
distance between the source and the observation point
(r). Especially, the approximate formulation is uniform-

ly valid from the near- to far-field region.
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