DOI QR코드

DOI QR Code

Processing of Cellular SiC Ceramics Using Polymer Microbeads

  • Lee, Sung-Hee (Department of Materials Science and Engineering, the University of Seoul) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, the University of Seoul)
  • Published : 2006.08.01

Abstract

A simple pressing process using a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads for fabricating cellular SiC ceramics is demonstrated. The strategy for making the cellular ceramics involves: (i) forming certain shapes using a mixture of a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads by pressing; (ii) heat-treatment of the formed body to burn-out the microbeads; and (iii) sintering the body. By controlling the microsphere content and sintering temperature, it was possible to adjust the porosity in a range of 16% to 69%. The flexural and compressive strengths of cellular SiC ceramics with $\sim$40% porosity were $\sim$60 MPa and $\sim$160 MPa, respectively.

Keywords

References

  1. P. Colombo, T. Gambaryan-Roisman, M. Scheffler, P. Buhler, and P. Greil, 'Conductive Ceramic Foams from Preceramic Polymers,' J. Am. Ceram. Soc., 84 [10] 2265-68 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb01000.x
  2. S. S. Hwang, S. W. Park, J. H. Han, K. S. Han, and C. M. Kim, 'Mechanical Properties of Porous Reaction Bonded Silicon Carbide(in Korean),' J. Kor. Ceram. Soc., 39 [10] 948-54 (2002) https://doi.org/10.4191/KCERS.2002.39.10.948
  3. J. S. Ha and C. S. Kim, 'Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads,' J. Kor. Ceram. Soc., 40 [12] 1159-64 (2003) https://doi.org/10.4191/KCERS.2003.40.12.1159
  4. S. J. Lee and H. D. Kim, 'Fabrication of Porous $Al_2O_3$ Ceramics Using Thermoplastic Polymer(in Korean),' J. Kor. Ceram. Soc., 41 [7] 513-17 (2004) https://doi.org/10.4191/KCERS.2004.41.7.513
  5. J. Luyten, S. Mullens, J. Coaymans, A. M. D. Wilde, and I. Thijs, 'New Processing Techniques of Ceramic Foams,' Adv. Eng. Mater., 5 [10] 715-18 (2003) https://doi.org/10.1002/adem.200300381
  6. J. Zeschky, F. Goetz-Neunhoeffer, J. Neubauer, S. H. Jason Lo, B. Kummer, M. Scheffler, and P. Greil, 'Preceramic Polymer Derived Cellular Ceramics,' Comp. Sci. Tech., 63 2361-70 (2003) https://doi.org/10.1016/S0266-3538(03)00269-0
  7. Y.-W. Kim, S. H. Kim, H. D. Kim, and C. B. Park, 'Processing of Closed-Cell Silicon Oxycarbide Foams from a Preceramic Polymer,' J. Mater. Sci., 39 5647-52 (2004) https://doi.org/10.1023/B:JMSC.0000040071.55240.85
  8. Y.-W. Kim, S. H. Kim, I. H. Song, H. D. Kim, and C. B.Park, 'Fabrication of Open-Cell, Microcellular Silicon Carbide Ceramics by Carbothermal Reduction,' J. Am. Ceram. Soc., 88 [10] 2949-51 (2005) https://doi.org/10.1111/j.1551-2916.2005.00509.x
  9. F. F. Lange and K. T. Miller, 'Open-Cell, Low Density Ceramics Fabricated from Reticulated Polymer Substrates,' Adv. Ceram. Mater., 2 [4] 827-31 (1987) https://doi.org/10.1111/j.1551-2916.1987.tb00156.x
  10. H. X. Peng, Z. Fan, J. R. G. Evans, and J. J. Busfield, 'Microstructure of Ceramic Foams,' J. Eur. Ceram. Soc., 20 [7] 807-13 (2000) https://doi.org/10.1016/S0955-2219(99)00229-0
  11. Y.-W. Kim, S. H. Kim, C. Wang, and C. B. Park, 'Fabrication of Microcellular Ceramics Using Gaseous Carbon Dioxide,' J. Am. Ceram. Soc., 86 [12] 2231-33 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03641.x
  12. Y.-W. Kim and C. B. Park, 'Processing of Microcellular Preceramics Using Carbon Dioxide,' Comp. Sci. Tech., 63 2371-77 (2003) https://doi.org/10.1016/S0266-3538(03)00270-7
  13. Y.-W. Kim, S. H. Kim, C. B. Park, and H. D. Kim, 'Processing and Mechanical Properties of Microcellular Ceramics,' Key Eng. Mater., 317-318 899-904 (2006) https://doi.org/10.4028/www.scientific.net/KEM.317-318.317
  14. Y.-W. Kim, H. D. Kim, and C. B. Park, 'Processing of Microcellular Mullite,' J. Am. Ceram. Soc., 88 [12] 3311-15 (2005) https://doi.org/10.1111/j.1551-2916.2005.00597.x
  15. I. H. Song, M. J. Kim, H. D. Kim, and Y.-W. Kim, 'Processing of Microcellular Cordierite Ceramics from a Preceramic Polymer,' Scripta Mater., 54 [8] 1521-25 (2006) https://doi.org/10.1016/j.scriptamat.2005.12.039
  16. Y.-W. Kim, Y. J. Jin, Y. S. Chun, I. H. Song, and H. D. Kim, 'A Simple Pressing Route to Closed-Cell Microcellular Ceramics,' Scripta Mater., 53 [8] 921-25 (2005) https://doi.org/10.1016/j.scriptamat.2005.06.032
  17. Y. Liu and B. R. Patterson, 'Grain Growth Inhibition by Porosity,' Acta Met. Mater., 41 2651-56 (1993) https://doi.org/10.1016/0956-7151(93)90134-E
  18. S. H. Kim, Y.-W. Kim, J. Y. Yun, and H. D. Kim, 'Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties(in Korean),' J. Kor. Ceram. Soc., 41 [7] 541-47 (2004) https://doi.org/10.4191/KCERS.2004.41.7.541

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360
  2. Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.625
  3. Properties of Working Electrodes with Polystyrene Beads Addition in Dye Sensitized Solar Cells vol.52, pp.5, 2015, https://doi.org/10.4191/kcers.2015.52.5.380
  4. Mechanical and microstructural properties of cordierite-bonded porous SiC ceramics processed by infiltration technique using various pore formers vol.53, pp.9, 2018, https://doi.org/10.1007/s10853-018-2007-z
  5. Effect of template size on microstructure and strength of porous silicon carbide ceramics vol.116, pp.1358, 2008, https://doi.org/10.2109/jcersj2.116.1159
  6. Processing of Porous Silicon Carbide Ceramics from Carbon-Filled Polysiloxane by Extrusion and Carbothermal Reduction vol.91, pp.4, 2008, https://doi.org/10.1111/j.1551-2916.2008.02280.x
  7. Effect of additive composition on microstructure and strength of porous silicon carbide ceramics vol.44, pp.16, 2009, https://doi.org/10.1007/s10853-009-3638-x