DOI QR코드

DOI QR Code

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo (Powder Materials Research Center, Korea Institute of Machinery and Materials) ;
  • Lim, Hyung-Woo (Powder Materials Research Center, Korea Institute of Machinery and Materials) ;
  • Choi, Eugene (Powder Materials Research Center, Korea Institute of Machinery and Materials) ;
  • Kim, Hai-Doo (Powder Materials Research Center, Korea Institute of Machinery and Materials)
  • Published : 2006.08.01

Abstract

The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.

Keywords

References

  1. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, 'Thermal Conductivity of $\beta-Si_3N_4$: I, Effects of Various Microstructural Factors,' J. Am. Ceram. Soc., 82 [11] 3105- 12 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02209.x
  2. M. Kitayama, K. Hirao, A. Tsuga, K. Watari, M. Toriyama, and S. Kanzaki, 'Thermal Conductivity of $\beta-Si_3N_4$: II, Effect of Lattice Oxygen,' J. Am. Ceram. Soc., 83 [8] 1985- 92 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01501.x
  3. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, and S. Kanzaki, 'Thermal Conductivity of $\beta-Si_3N_4$: III, Effect of Rare Earth (RE=La, Nd, Gd, Y, Yb, and Sc) Oxide Additive,' J. Am. Ceram. Soc., 84 [2] 353-58 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00662.x
  4. K. Watari, K. Hirao, M. E. Brito, M. Toriyama, and S. Kanzaki, 'Hot Isostatic Pressing to Increase Thermal Conductivity of $Si_3N_4$ Ceramics,' J. Mater. Res., 14 [4] 1538-41 (1999) https://doi.org/10.1557/JMR.1999.0206
  5. H. Yokota and M. Ibukiyama, 'Microstructure Tailoring for High Thermal Conductivity of $\beta-Si_3N_4$ Ceramics,' J. Am. Ceram. Soc., 86 [1] 197-99 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03305.x
  6. N. Hirosaki, Y. Okamoto, F. Munakata, and Y. Akimune, 'Effect of Seeding on the Thermal Conductivity of Self- Reinforced Silicon Nitride,' J. Eur. Ceram. Soc., 19 2183-87 (1999) https://doi.org/10.1016/S0955-2219(99)00030-8
  7. C. Kawai and A. Yamakawa, 'Effect of Porosity and Microstructure on the Strength of $Si_3N_4$ : Designed Microstructure for High Strength, High Thermal Shock Resistance, and Facile Machining,' J. Am. Ceram. Soc., 80 [10] 2705-08 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03179.x
  8. J. F. Yang, Z. Y. Deng, and T. Ohji, 'Fabrication and Characterization of Porous Silicon Nitride Ceramics Using $Yb_2O_3$ as Sintering Additive,' J. Eur. Ceram. Soc., 23 371- 78 (2003) https://doi.org/10.1016/S0955-2219(02)00175-9
  9. N. Miyakawa, H. Sato, H. Maeno, and H. Takahashi, 'Characteristics of Reaction-Bonded Porous Silicon Nitride Honeycomb for DPF Substrate,' JSAE Review, 24 269-76 (2003) https://doi.org/10.1016/S0389-4304(03)00050-X
  10. C. Kawai and A. Yamakawa, 'Network Formation of $Si_3N_4$ Whiskers for the Preparation of Membrane Filters,' J. Mater. Sci. Lett., 17 873-75 (1998) https://doi.org/10.1023/A:1006619413144
  11. C. Kawai, T. Marsuura, and A. Yamakawa, 'Separation-permeation Performance of Porous $Si_3N_4$ Ceramics Composed of $\beta-Si_3N_4$ Grains as Membrane Filters for Microfilteration,' J. Mater. Sci., 34 893-96 (2001) https://doi.org/10.1023/A:1004532200735
  12. J. F. Yang, G. J. Zhang, and T. Ohji, 'Fabrication of Lowshrinkage, Porous Silicon Nitride Ceramics by Addition of a Small Amount of Carbon,' J. Am. Ceram. Soc., 84 [7] 1639-41 (2001)
  13. J. S. Haggerty and A. Lightfoot, 'Opportunities for Enhancing the Thermal Conductivities of SiC and Si3N4 Ceramics through Improved Processing,' Ceram. Eng. Sci. Proc., 16 [4] 475-87 (1995) https://doi.org/10.1002/9780470314715.ch52
  14. N. Kondo, Y. Inagaki, Y. Suzuki, and T. Ohji, 'Fabrication of Porous Anisotropic Silicon Nitride by Using Partial Sinter- Forging Technique,' Mater. Sci. Eng. A, 335 26-31 (2002) https://doi.org/10.1016/S0921-5093(01)01907-4
  15. Y. Inagaki, N. Kondo, and T. Ohji, 'High Performance Porous Silicon Nitrides,' J. Eur. Ceram. Soc., 22 2489-94 (2002) https://doi.org/10.1016/S0955-2219(02)00107-3
  16. M. Kramer, M. J. Hoffmann, and G. Petzow, 'Grain Growth Kinetics of $Si_3N_4$ During $\alpha/\beta$-Transformation,' Acta Metall. Mater., 41 [10] 2939-47 (1993) https://doi.org/10.1016/0956-7151(93)90108-5
  17. A. J. Pyzik and D. R. Beaman, 'Microstructure and Properties of Self-Reinforced Silicon Nitride,' J. Am. Ceram. Soc., 76 [11] 2737-44 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb04010.x
  18. A. J. Moulson, 'Reaction-Bonded Silicon Nitride : Its Formation and Properties,' J. Mater. Sci., 14 1017-51 (1979) https://doi.org/10.1007/BF00561287
  19. H. M. Jennings, 'On Reactions between Silicon and Nitrogen,' J. Mater. Sci., 18 951-67 (1983) https://doi.org/10.1007/BF00551961
  20. G. Ziegler, J. Heinrich, and G. Wotting, 'Relationships between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,' J. Mater. Sci., 22 3041-86 (1987) https://doi.org/10.1007/BF01161167
  21. D. R. Messier and P. Wong, 'Kinetics of Nitridation of Si Powder Compacts,' J. Am. Ceram. Soc., 56 [9] 480-85 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12529.x
  22. S. Y. Lee, K. Amoako-Appiagyei, and H. D. Kim, 'Effect of $\beta-Si_3N_4$ Seed Crystal on the Microstructure and Mechanical Properties of Sintered Reaction-Bonded Silicon Nitride,' J. Mater. Res., 14 [1] 178-84 (1999) https://doi.org/10.1557/JMR.1999.0026
  23. H. J. Kleebe and G. Ziegler, 'Influence of Crystalline Second Phases on the Densification Behavior of Reactionbonded Silicon Nitride During Post Sintering under Increased Nitrogen Pressure,' J. Am. Ceram. Soc., 72 [12] 2314-17 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06082.x
  24. N. L. Parr, R. Sands, P. L. Pratt, E. R. W. May, C. R. Shakespeare, and D. S. Thompson, 'Structural Aspects of Silicon Nitride,' Powder Met., 8 152-63 (1961)
  25. H. M. Jennings and M. H. Richman, 'Structure, Formation Mechanisms, and Kinetics of Reaction-Bonded Silicon Nitride,' J. Mater. Sci., 11 2087-98 (1976) https://doi.org/10.1007/BF02403359
  26. H. M. Jennings, S. C. Danforth, and M. H. Richman, 'Microstructural Analysis of Reaction-Bonded Silicon Nitride,' Metallaography, 9 [5] 427-46 (1976) https://doi.org/10.1016/0026-0800(76)90005-7
  27. A. Atkinson, P. J. Leatt, A. J. Moulson, and E. W. Roberts, 'A Mechanism for the Nitridation of Silicon Powder Compacts,' J. Mater. Sci., 9 981-84 (1974) https://doi.org/10.1007/BF00570392
  28. B. T. Lee and H. D. Kim, 'Nitridation Mechanism of Si Compacts Studied by Transmission Electron Microscopy,' Mater. Trans. JIM, 37 [10] 1547-53 (1996) https://doi.org/10.2320/matertrans1989.37.1547

Cited by

  1. The catalytic role of additive components for the nitridation of silicon/additive mixture vol.124, pp.3, 2016, https://doi.org/10.2109/jcersj2.15276