2006 8& TAtZEE

=% 2006-43TC-8-7

—

Rigte

P>

£ o

i

Al

1Y

| =X M 43 A TCHH B8 S

_'_FL

69

As AR Adsst 7

( Soft Decision Approaches for Blind Decision Feedback Equalizer
Adaptation )

( Wonzoo Chung )

=2

o ERANE 2A7V5d LT WIS olgste) AART BRAT A5 A¢ e
ge F

AolelA AR s AUES AL BTk AL 7Y
%“?l’ ’\]E-E— MBI 19 Eq-a]- A ET R e =
& FRT=9

ok
oF

ZFres 33 RE

o1zl SNRel wt £ZE 947§ HA3 st DFES A%
& 2C9 DD-LMS HeEEE 2¢e 3944 A4 Agte 7)
2R Alolo] FAstd A3 4T Wel2} DFE ol propagationd H28 sled=E 7193,

Abstract

In this paper, we propose blind adaptation strategies for decision feedback equalizer (DFE) optimizing the operation

mode between acquisitionand tracking modes based on adjustable soft decision devices. The proposed schemes select an
optimal soft decision device to generate feedback samples for the DFE at a given noise to signal ratio, and apply
corresponding adaptation rules which combine a blind infinite impulse response (IIR) filtering adaptation and the
decision—directed least mean squared (DD-LMS) DFE adaptation. These adaptation approaches attempt to achieve not only

smooth transition between acquisition and tracking of DFE but also mitigation of error propagation.

Keywords :

I. Introduction

The most difficult obstacle in digital data
broadcasting over terrestrial wireless channels such
in ATSC DTV is perhaps the severe and
long—-delay-spread multipath with time-varying
nature. A decision feedback equalizer (DFE) has been
recognized as a strong candidate to combat such

as

difficult channels with a relatively low computational
Y
{ A

cos
Unfortunately, the recursive structure of DFE
introduces an undesirable effect named error

propagation, A single false decision often triggers a
chain of false decisions and propagates decision
errors especially for low signal to noise ratio (SNR)
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W Furthermore, in order to initialize the feedback
filter of DFE, DFEs require perfect knowledge on
channel. Incorrect channel estimation causes
irrecoverable error propagation.

Recently, there have been two major attempts to
improve the weakness of DFE, mitigation of error
propagation and adaptive blind DFE initialization. To
mitigate error propagation, soft decision devices are

instead of hard
(21,3

proposed to use soft decisions,
decisions, to the DFE, to minimize decision error

To relieve the dependency on the reference signals,
proposed blind adaptive
approaches for initialization of DFEs M6 Basically,
a transversal filter and a recursive filter are updated
by a blind adaptive IIR algorithm such as IIR
Constant Modulus Algorithm (CMA)®,  Minimum
Output Energy (MOE)™. In practice, IR-CMA is a

several authors have
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widely used initialization method due to its
computational efficiency. Once the IR-CMA (filter
opens constellation eye, the coefficients of the
recursive filter are used for initialization of the DFE
filter, and then DFE is updated by the DD-LMS
algorithm to track time variation of the channel. The
DD-LMS DFE achieves a minimum mean squared
error (MMSE) performance, but lacks acquisition
ability. On the contrary, the IR equalizer has
acquisition  ability, but exhibits poor MSE
perfomlancem. Therefore, in the presence of rapid
time varying channels, it is desired an adaptation
mechanism  optimizing the trade-off between
acquisition ability and MMSE performance.

In this paper, we propose adaptive adaptation
methods blending IR equalization and DD-LMS by
generalizing the decision device. We view the IIR
equalizer and DD-LMS DFE equalizer as two corner
cases of a general filtering structure with a soft
decision device. We consider two piece-wise soft
decision device families, the linear combining decision
device [8] and the Run and Go decision device [9],
which combines the blind IIR adaptation and the
DD-LMS adaptation. We set the blending ratio,
which is adjusted by decision device setting, with
respect to SNR by optimizing the soft decision device
as considered In error propagation mitigation.

In section I we briefly introduce .a DFE system
model with soft decision device and existing blind
adaptation methods. Adaptation rules based on Linear
combining decision device and Run and Go decision
device are discussed in Section III. Optimization of
the soft decision devices is studied in Section IV.
Section V presents simulation results, and Section VI

concludes.

II. Soft Decision DFE and DFE Blind
Adaptation

1. Soft decision DFE
Consider a DFE system model as described in
Figure 1. A sequence of sources {Sk} is transmitted

through a multipath channel € and additive white
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Fig. 1. Block diagram of the DFE system.

Gaussian noise (AWGN) { W} of variance o2. The
received signal, {r;}, is processed by a linear
equalizer f and the resulting signal is subtracted
with the feedback filter d output to generate the
equalizer output {y;}.

Ignoring the system delay issue, the equalizer
output y(k) can be written as

Y =as, Tz, (1

where z, comprises the residual inter-symbol

interference and colored noise terms [10] and o
denote the bias term from the MMSE DFE [11]. In
most practical DFE implementations, the bias is
removed by a multiplier as considered in [12]. Hence,
without loss of generali_ty, we assume a=1 for
decision device derivation. The equalizer output y; is

sent to a decision device ¥ and the decision ¥

are fed back to the feedback filter d. In a DFE with
soft decision device, the decision device ¥ is
optimized to minimize the equalizer output MSE o*.

¥, =argminE|| y, (%) -5, IF @

Assuming reasonable statical properties for {Z,}
as done in [313], including that {Z,} is a zero mean
Gaussian, the optimal device by
W, =E{s: 13}, Specifically, for BPSK signals the

optimal decision device becomes

Is given

¥, ()= tanh(% : 3)

2. Blind Adaptation of DFE
In practice, adaptive methods are commonly used
to obtain the MMSE equalizer coefficients. Currently,
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in most equalization system a blind IIR algorithm is
used for acquisition state and once reliable decisions
are available a DD-LMS algorithm is applied to find
MMSE coefficients. A general adaptation rule can be
written in the following forms

f (k+1)=f (k)+ur,e(k) @

d,(k+1)=d,(k)— ¥ (3, )e(k), (5)

where -f, (k) and d, (k) denote the -th element of
fand d at the k-th iteration, respectively, e(k)
denotes an error term at k, and ()" denotes
conjugator.

Several blind adaptation approaches generating the
error term have been proposedm’ ©) Among them, a
method widely used for the acquisition stage (closed
eye situation) in practice as proposed in [5] uses
constant modulus algorithm (CMA), a popular blind
adaptive algorithm for linear equalizers [14], to
of the IR-filter output,

known as

minimize dispersion

JCMA:E(lykI2~7)27 where 7y is
dispersion constant, by using e (k) =y (yl*—7)
with the trivial feedback sample generator
Y=,

Once reasonable estimation of f and d are
obtained, DD-LMS algorithm is applied to track
possible time wvariation of channel, which uses the

~

error term e (k) = y(k)— y(k) with the hard decision

feedback () =y
achieves MMSE performance compared

DD-LMS
in the
absence of decision errors, but lacks acquisition
ability. Therefore, it is desirable to rely on IR
algorithms as little as possible, while maintaining

samples, ie.

(re)acquisition ability.

In the following section we develop adaptation
methods to combine IIR algorithms and DD-LMS
algorithms based on adaptive soft decision devices
that control the transition between IIR and DD-LMS
algorithms.

(952)

7t

II. Proposed Blind DFE Adaptation Schemes

The goal of this section is to provide a strategy to
generate the error term e and the feedbak sample

generator, or decision device, ¥ which minimizes
the output MSE and has capability of smooth
transition from IR to DD-LMS. The proposed
strategies will update the adaptation rule and, at the
same time, the feedback sample by changing the
decision device as illustrated in Figure 2.

In this paper, without loss of much generality, we
focus on PAM cases. For since it can be easily
generalized for other constellations (such as QAM).
For the QAM case, once can use a blind carrier
phase recovery loop such as [?] along with the
following adaptation algorithms to remove phase
rotation, which cannot be resolved by a CMA-type
blind equalizer.
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Fig. 2. Propose adaptive blind adaptation for DFE with

Soft Decision Device.

1. Linear Combining Scheme
Define a family of decision devices Z, for

A€ [0,1] as

L(»)=Ay+(1-A)p forO<A<l. (6)

L, linearly combines hard decision and raw output

as done in [8] (see Figure 3-a)). Using this decision
device, the feedback sample I, (y) is applied to the

feedback filter d and the error term is generated as
the following

ek)=Ay,(n[-N+A-D( -D). @
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These update equations can be viewed as
stochastic updates obeying an amalgamated cost
function of DD-LMS and IIR-CMA. As X varies 0 to
1, the update rule varies from DD-LMS to IIR-CMA
and the decision device transforms from the slicer to
identity function. _

2. Run and Go scheme
For 2M/-level PAM signals, let I' be the radius of
the constellations, i.e.

s,e{-@M -DT,..,-I\T,..,2M -1}

Recall that for 2A7-PAM the hard decision y is given
by

y=arg min |y—(2k~1I| ©)
Similarly, we define the nearest boundary value of y,
denoted y, as the following

y =argmin|y - 24T] (10)

Using these notations, we define a family of soft
decision device 7, for A€ [0,1]
%+y if]y—y’<ll"

A

y

T, = (1)

else

Correspondingly, we update equalizer coefficients
with the following error term

Y=

|2 if ly —yl <A
else

(12)

As X wvaries from 0 to 1, the above update rule
changes from DD-LMS to IIR-CMA algorithm and
the decision device transforms from slicer to identity
function (see Figure 3-b)). In stead of stopping
adaptation for the unreliable region ly— yl< AI' as in
Stop and Go algorithrnue], the proposed algorithm
applies a blind adaptation (Hence, Run and Go”).
Although simulation examples never fail to converge,
assuring stability and convergence issues of this
algorithm is an extremely difficult task and beyond
the scope of this paper.

B RRET N3
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IV. Adaptation Optimization

The proposed adaptation rules and decision devices
are parameterized by A€ [0,1] and )\ determines
the "blending ratio” between IIR and DD-LMS
adaptation. In this section, we optimize A,
determining adaptation rule between IIR and
DD-LMS adaptation, such that the resulting decision
device is optimal in the MSE sense. W.

Recall that the DFE output is written as

ie.

Ve =8tz (13

We investigate the optimal M\ for the given
o’ (= E(|Zy]*))under the following assumption

D) {8} is an iid. sequence.

ii) Z, is a zero mean Gaussian random process
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with variance o°.
i) {S,} and {Z,} are uncorrelated.

1. Optimal Linear Combining Adaptation
The optimal L, for given o° is obtained by X,
satisfying

A, =argmin E(L,(,)~s,)’ (14

Using L2 =A% +(1=A)J; we have a quadratic

equation of A by expanding E(L, (yk)_sk)z. Hence
the optimal X is given as

_ E()A’k_sk)z_E{j’ka}
o~ EG, -5 2E ) 1

(15)

By calculating E(j}k—sk)z and E{}A’kzk} , one

can obtain the optimal A for a given o2. In practice,
the

simulation and used as a table saved in a memory. In

A, can be computed based on numerical

BPSK case a closed form expression of A, can be
obtained as the following

A A 1
E@—5) =2 {p, #s,}= 40(—) (16)

E{pz)= ﬁ f xe'” = 0'\/%5#‘7, am

where @) is the Q-function. Consequently, we
have the optimal combining weight for linear
combining decision device

PO
749 -20,Ze 7 + o

(18)

2. Optimal Run and Go Adaptation
The optimal Run and Go device for given O % s
obtained by

A, =arg m}nEllTﬂ(yk)_Sk ”2 . (19)

(954)
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The expectation value expands as
E(T,(») _Sk)z
Ve ™Y
= Ely—y|<,1r [(‘% TV~ S )’ ] (20)

+ E|y—yl>/“" {(j}k ~ Sk )2}

Unlike the linear combining case, obtaining the

closed form optimal A from (20) is quite difficult,
although numerical simulation method can be used

A

for %o
To obtain a closed form expression for BPSK
signals, we simplify the above equation using the

first order Taylor approximation of Gaussian p.df.

2 “x (0<x<0”)
2 e’ x x<o
e2 ~{\2ro @1)
i 0 (x>0?)
Assuming 6% <1, we now have
40 =L
E(T,l(yk)—sk)z = e*’ (22)
for A= 07 and for (’130'2)
E(TJ(J’k)‘Sk)Z =
[ 4 g8 1 1
e2
A+ —(+—=)A+ A-0?)
V2|30’ 30( 0'2) 203( )
(23)

The approximation is a quadratic function of A

for 0<A<0? and has the minimum at A =07,

Therefore, the optimal Ao minimizing the
approximated MSE is given by
A, =0° (24)

This approximation turns out to be the piece-wise

linear approximation of the optimal decision device

2
tanh(y,/07) 45 proposed in [13]. For higher
A

order-PAM and QAM, “% can be approximated
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using the piece-wise linear approximation of the soft
decision device as in [13].

V. Simulation

In this section we present simulation results of our

proposed soft decision device with DFE adaptation. In

practice O % can be obtained from training sequence

or approximately estimated by  computing

A N2
E(yi -3 based block-by-block
calculation or leakage integration. The fist simulation

on the

result, Figure 4, shows acquisition ability of the
proposed algorithms in comparison with IIR-CMA.
BPSK signals are transmitted through a severe
multipath chamnel € =[0.3,1,0,0.2,0,0.7,0,—0.5]
under 30dB SNR. The DFE is equipped with a 10 tap
feedforward filter and a 10 tap feedback filter,
initialized with conventional single spike method[m,

all zeros but Js=1
successfully  equalize

Both proposed algorithms

the received signal with

satisfactory residual MSE for #=0.001 " while
IR-CMA alone barely successes to open eyes for the
same step size. The second example shows tracking
ability of the proposed algorithms in the presence of
sudden change of the channel. The channel in the

a, abruptly to

2,500th  paud
As shown in Figure 5the both proposed

first  simulation, changes

CZ = [1, 0, 0, 0’ 07 Oa 03] at the

sample.
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Fig. 4. Acquisition ability of proposed DFEs.
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DFE

algorithms successfully track the transition. Figure
5-a) show the equalized symbols as the DFE runs.
Clearly, one can observe a burst of symbols during

the transition of channels from € to C2. Figure 5-b)

shows the trajectories of Afor the both proposed
algorithms. As the estimated MSE of DFE output

increases in the transition period, the A value of each
algorithm increase to re-acquire data. Once the
algorithms transit from DD-LMS to mixed ones, the
MSE of DFE output decreases and finally the
algorithm returned to DD-LMS.

VI. Conclusion

In this paper, we have proposed blind DFE
adaptation methods based on adjustable soft decision
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devices. The proposed algorithms, Linear Combining
method and Run and Go method, blend blind
MR-CMA adaptation for the acquisition stage and
DD-LMS adaptation for the tracking stage. We
proposed to optimize the combined adaptation rule by
optimizing the soft decision device for given SNR.
We presented
optimization for BPSK signal. Simulation results
show that the proposed algorithms successfully deal
with dynamic change of channels by smoothly

closed form expression of such

changing adaptation modes. Rigorous proof on the
stability and convergence of the proposed algorithms
are subjects of future study.
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