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A Proposal of Simplified Eigenvalue Equation
for an Analysis of Dielectric Slab Waveguide

Young-Kyu Choi*

Abstract - In dielectric waveguide analysis and synthesis, we often encounter an awkward task of
solving the eigenvalue equation to find the value of propagation constant. Since the dispersion
equation is an irrational equation, we cannot solve it directly. Taking advantage of approximated
calculation, we attempt here to solve this irrational dispersion equation. A new type of eigenvalue
equation, in which guide index is expressed as a function of frequency, has been developed. In
practical optical waveguide designing and in calculating the propagation mode, this equation will be
used more conveniently than the previous one. To expedite the design of the waveguide, we then solve
the eigenvalue equation of a slab waveguide, which is sufficiently accurate for practical purpose.
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1. Introduction

In dielectric waveguide analysis, we often encounter a
difficult task of solving the eigenvalue equation to find the
propagation constant in the guided region. Since an
analytical closed-form solution is not available, many
authors have reported different solution methods [1, 2, 3].
Goell solved the problem with a rigorous circular harmonic
computer analysis [1]. Marcartili derived a closed-form
solution for the well guided field by mode matching
approximation [2]. And Hocker and Bruns used the well-
known effective index method [3]. Among these works,
Goell's result seems to be the exact one to date even though
the solution technique is complex. Parallel to the above
works, we have also tried to solve the two-dimensional
transcendental eigenvalue equation approximately.

In this paper, we first describe the approximate solution
technique of the 2-D eigenvalue equation to get a closed-
form solution. Then, a model example is presented to
replace a 3-D waveguide by a 2-D one using effective
index method, so that this closed-form solution can also be
applied. The obtained results of this conversion are
compared with that of [1, 2] and [4].

2. Two-dimensional Eigenvalue Equation

The basic structure of slab waveguide is shown in Fig. 1.
In this waveguide, the light confinement is on x-direction,
the propagation of light is on z-direction and the length of
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the waveguide is considered infinite in y-direction. The
refractive index of the film region », is considered higher

than that of the cover n, and substrate », regions.

Fig. 1. Sketch of an asymmetric slab waveguide; n,, n,

and », represent the indexes of the cover, film and

substrate respectively. T is the width of the film
region.

Once light enters the waveguide through the film region,
it will remain confined in the film region by the total
internal reflection at the cover and substrate boundaries. In
the figure, the width of the film of guided region is denoted
by T. A mode in the waveguide must satisfy Maxwell’s
equation as well as wave equation. Let us consider that the
time varying electric and magnetic fields are propagating
in the z-direction as the form,

E=E(x,y)-¢“"

— . (1)
H=H(x,y)-&"“ "™

where o is the angular frequency and B is the propagating
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constant in the z-direction. If incident light free space
waveguide and velocity are designated by A and C,
respectively, the angular frequency w=2nCy/A., considering
uniform field in the y-direction (i.e.,8/dy=0), we can

then write the 2-D wave equation as,

2

E 2 2

(k- B)=0 2)
Ox

where £,is the free space wave number equal to 27/4

and n is index of the medium. From Maxwell's equation we

find that the TE mode field components are E, H, and

H,, and the TM mode field components are H,, H, and

E,. Since the treatment for TE and TM modes are the

same, from now on we shall consider the TE modes only.
Thus for TE modes, the transverse and longitudinal
magnetic field components can be expressed in terms of
the transverse electric field components as,

H=--P g
wu,
1 OE )
H=—+—
; jou, ox

where 4z is the vacuum permeability. The solutions of

the wave equation for transverse electric field in three
layers of the slab waveguide are found in [5, 6, 7]

E =E exp(-y.x) x>0
E, =E, cos(k,x+4,) -T<x<0 4
E, =FE, exp[A,(x+T)] x<-T

where E,E, and E are the complex field amplitudes of
the respective layers. Their value will be determined by
matching the field components at the interface of
discontinuity. The parameters £, , y,, y, and ¢ are
defined by,

k, =k, n; - N*

ye= kN -2 5)
7, =k N -n!

tang =y /7,

In the above equation, N is the effective index of the
guide. At the boundaries x=0.0 and x=-T , the

transverse electric and magnetic field should be continuous.

Using these boundary conditions, we get two sets of
equations from which the 2-D eigenvalue equation is found

17,

2

s

kT =(m+)m —tan™ [ﬂj —tan™ (LJ (6)

c

where m' denotes the mode number, m'=0,1,2,---.

Equation (6) is a transcendental equation and cannot be
solved without approximation or rigorous computer
simulation. Defining the normalized frequency by V ,
normalized guide index by b and asymmetry measure by
a as given below.

V=kT\n —n
b=(N*-n))[n; —n]) (7)
a=(n’—n)/(n;/N?)

Eq. (6) can be written as,

VNl—b=(m—-Dx+tan™

b
Vi-b 1-b ®)

Here, m is the mode number, m=123,.--- . A

graphical representation of Eq. (8) is rather easy in
comparison to Eq. (6), but the objective to know the value
of b which is a function of effective index N or the
propagation constant 3 , is not yet fulfilled. As a matter of

fact, a nearly exact value of b cannot be obtained without
rigorous computer simulation. Therefore, to find a simple
but accurate solution of Eq. (8), we then followed an
approximate solution technique. First, we approximated
this equation for two extreme conditions, which are used to
derive a comprehensive closed-form solution of the
eigenvalue equation, Eq. (8).
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Fig. 2. Two-dimensional dispersion curves for the eigen-
value equation



Young-Kyu Choi 383

3. The closed-form Solution of the
Eigenvalue Equation

The characteristic curve of Eq. (8) is shown in Fig. 2.
We first approximate one of these curves, say the curve for
m=1 at b=0. That means in the vicinity of cutoff, Eq.
(8) can be approximately solved.

V=(m-1)z+tan” Va +tan™ v/b

9)
= (m-1)z+tan" Va +b
Therefore, we get,
b=[V—(m—1)7r—tan“ JZ]Z (10)
Now, Eq. (8) is rearranged as,
P T =(m-Dr+Z—tan Y20, 7
2 3o 2
_tan~ Y120 (11)
b+a
aNL=b LAl=b
=mrw —tan —ta

For the well-guided condition ie.,b=1, Eq. (11) is
approximately solved [4].

Vi-b Vi-p

M — —=—

J1-b = 12
g \/Z Vb+a (12)

From the above equation we get,

b=1- (13)

mn :
V+A+1/Ja+1)

Equations (10) and (13) are accurate only in two extreme
regions (b= 0 and b =1). To fit these equations with the
value region of the b—V curve of Fig. 2, a combined
equation is derived given by,

mrmnw

b=B", B=1-|— "% (14)
(V+7r—tan"\/—c;]

This combined equation reduces to Eq. (10) when
b =1.0. The parameter A is small and for better accuracy,
we have added this parameter in the power of the equation.
Even when we do consider A in Eq. (14), we find that the

combined equation is very close to the original curve (see
Fig. 3).
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Fig. 3. The versus V plot for the eigenvalue Eq. (8) and
also for the combined approximated Eq. (14)
without considering  A.

We defined A as,

_ n(a,m)

d(v) (3

From the above equation, we can see that A is actually a
function of three variables, a,mand V. For convenience

of calculation, we have expressed A as a function of two
variables, n(a,m),and d(}').Taking log on both sides of

Eq. (14), we get,

zlnb—lnB

A 16
InB (16)
From Eq. (16) we can write,
Ay = —1a:m (17)

" (Inb/InB)-1

In the above equation again, all three variables are
present and it is difficult to get an analytical solution. So
we followed a graphical approximation method.
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Fig. 4. Plot of the parameter d(V) as a function of the
normalized frequency V in Eq. (17)
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Let us consider ¢ =0 and m=1. Changing the value
of the normalized guide index b, we calculated the
corresponding value of ¥ from Eq. (8). Substituting these
values of ¥V in Fig Eq. (17), we can plot d(V)as a
function of ¥V as shown in Fig. 4. Upon close inspection of
this figure we find that the upper part of the curve can be
approximated by a straight line and the lower part by an
exponential function. This leads to an approximate
expression for d(V) as,

d(V) =044V +0.55+0.29"* (18)

and from Egs. (14) and (15) we also get,
n(a,m)=d¥V)Inb/In B -1) (19)

In order to find a simple approximate equation, we
consider two separate cases;

Case 1: m=1, a=variable. From the graphical solution
d(V), Eq. (19) may be approximated as,

n(a, 1) = 04327 —0.15¢™"° +0.72 (20)

Case2: a=0, m =variable. From the graphical solution
d(V), Eq. (19) may be approximated as,

n(0, m)=1+0.46(1—eV"""?) 1)

From Eq. (20) and Eq. (21) we can derive a general
solution for n(a, m)as,

n(0, m)—1

n(a, m) = n(a, 1)+
a+l

(22)

Egs. (14), (15), (18), (20), (21) and (22), collectively
give a closed-form solution to the eigenvalue Eq. (8). It is
clear from the above description, that if we fix the
normalized frequency ¥ , for any mode number, m and
the asymmetry measure @ , we can calculate the
normalized guide index & with a simple calculator.
Whereas, conventionally, we must first fix the value of »
to get value of ¥, which is a lengthy process. Thus the
closed-form solution expedites the design of an optical
waveguide.

4. Three-Dimensional Eigenvalue Equation

The dielectric slab waveguide explained in the earlier

section is a useful model for more complicated waveguide
structures. However, in most practical applications, more
complicated waveguides are used. The waveguides used in
integrated optics are usually rectangular strips of dielectric
material that are embedded in order dielectrics.

Substrate

Substrate

(a) (b)

Fig. 5. (a) A rectangular dielectric waveguide in an
integrated optics application. (b) A cross-section
view of the rectangular guide showing the index of
different layers.

Fig. 5(a) shows the geometry of an embedded type
rectangular waveguide. An exact analytical treatment of
such a 3-D guide is not possible. Approximate solutions by
numerical methods have been obtained that can be made as
accurate as desired [1].

In a 3-D guide, there are two types of modes that the

waveguide can support. One type, which we will call £,

mode, is polarized predominately in the x-direction. The
other mode, E’ is polarized predominately in the y-

direction. The integers, p and q, are the mode numbers, and
indicate the number of maxima of the field of distribution
in x and y direction. We can adjust the amplitude
coefficients of longitudinal field components £, and

H _so that one of the transverse field components vanishes.
Thus, each of the modes of E;q and qu have two

eigenvalue equations.
By matching the field components of E;  at regions 1,

2 and 4 (see Fig. 5(b)), we get the obtained eigenvalue
equation, which corresponds to the eigenvalue equation of
the TM modes of the infinite slab [8]. On the other hand,

by matching the field components of E; at regions 1, 3

and 4, we get another eigenvalue equation which
corresponds to the TM modes of the infinite slab [5].
Solving of these eigenvalue equations is now even tougher
than the 2-D eigenvalue equation. Since our closed-form
solution is derived for a 2-D guide, we cannot apply it in
this case directly. One way of attacking the problem is to
employ the effective index method. But in applying this
method we must consider field polarization of both the TE
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and TM modes. When the index difference (n —n,) is

large and (»,—n,) and (n —n,) are small, the
normalized dispersion curve for TE modes can be used in
both x- and y-direction [4] with an approximate change in
the asymmetry measure « . However, if the index

difference (»,—n,) is also large, the polarization
characteristics of the mode must be retained, and the
normalized mode dispersion curves for both TE and TM

modes must be employed [3].
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Fig. 6. (a) Cross-sectional view of a rectangular dielectric
waveguide, (b) 2-D equivalent guide considering y
directional confinement of light, (c) 2-D equivalent
guide considering x directional confinement of light.

5. Effective Index Method

In order to use the closed-form solution described earlier,
we reduce the 3-D structure into a 2-D one by using this
method. In this method the propagating constant of the 3-D
guide is first calculated letting the width of the guide
approach infinity Fig. 6(b). This propagation constant is
then used to define an effective dielectric constant. A
second slab guide, filled with material of the previously
calculated dielectric constant, is obtained by allowing the
short dimension, or the height of the rectangular guide, to
approach infinity (Fig. 6(c)). The propagation constant of
this second equivalent slab (Fig. 6(c)) describes the modes
of the original rectangular waveguide. We shall follow
reference [1] and extend the theory for the effective index
method as described in [2].

Let us consider n,,, =n =22andn =n, =1.002xn_,

where the width of the guide is 7 and the height is/.
Firstly, let us consider the light confinement in the y-
direction with T approaching infinity. From Eq. (7), we
get the normalized height of the guide of Fig. 6(b) as,

Vy=2§-h (2 —n?)

h
:z-ZE,I(n; —-n?)

By varying h/A,we can calculate the value of ¥ and
then the closed-form solution. Using Eq. (7), the effective

index denoted by n,, is calculated for the guide Fig. 6(b).

The addition of confinement of light in the x-direction is
now represented by the 2-D guide of Fig. 6(c) with the
previously calculated effective index. The normalized
guide width of Fig. 6(c) is given by,

27
Vo= TN =) 24)

=V,b"T/h

(23)

As before, the normalized guide index, &'of guide, of
Fig. 6(c) is then calculated using the closed-form solution.
The calculated effective index n,, describes the mode of

the original 3-D structure in this time.

6. Numerical Results
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Fig. 7. A comparison of the mode dispersion curves for (a)
two-dimensional waveguide, (b) three dimensional
rectangular waveguide; T =4, n, =1.002; Goell's
computer solution (solid curve), Marcatili's analysis
(dash and dot curve), Closed-form solution (broken
line curve).
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In Fig. 7 we have shown the b versus V curves of the
original eigenvalue equétion and the closed-form solution.
The exact value denoted by b is compared with the
closed-form value denoted by 4'. For two-dimensional
cases, we compared our result with that of reference [6] in
Fig. 7(a). The solid line curves are approximate solutions.

There is no appreciable difference between the
approximate and the exact curves in the fundamental mode,
but for higher order modes (m =2,3,---), a small deviation

is observed for b, within 0.3 to 0.8.

We then applied this closed-form equation to a square
dielectric guide for 2-D light confinement using effective
index method. For small index difference between core and
cladding (n, =1.002xn,,,), and with unity aspect ration,

our curves are closer to Goell's curves [3] than Marcatili's
curves [4] as shown in Fig. 7(b). As b approaches to unity,
our closed-form solution exactly fits Goell's curve, but for
b=0.0, there is a small discrepancy. Even though near
cutoff, our results were more favorable than Marcatili’s.

Table 1. A comparison between b (exact) and 5’ (closed-
form) for the 2-D waveguide.

Asymm. | Mode | Exact value Closed-form Error
parameter no.

a m b b’ (b-b")
0.00 1 0.2000 0.2009 -0.0009
0.00 1 0.4000 0.4008 -0.0008
0.00 1 0.6000 0.6005 -0.0005
0.00 1 0.8000 0.8002 -0.0002
0.00 2 0.2000 0.2002 -0.0002
0.00 2 0.4000 0.3942 0.0058
0.00 2 0.6000 0.5932 0.0068
0.00 2 0.8000 0.7962 0.0038
0.00 3 0.2000 0.2021 -0.0021
0.00 3 0.4000 0.3952 0.0058
0.00 3 0.6000 0.5939 0.0068
0.00 3 0.8000 0.7966 0.0038

100.00 1 0.2000 0.1982 0.0018
100.00 1 0.4000 0.3887 0.0113
100.00 1 0.6000 0.5870 0.0130
100.00 1 0.8000 0.7923 0.0077
100.00 2 0.2000 0.1993 0.0007
100.00 2 0.4000 0.3921 0.0079
100.00 2 0.6000 0.5915 0.0085
100.00 2 0.8000 0.9754 0.0046
100.00 3 0.2000 0.1998 0.0002
100.00 3 0.4000 0.3942 0.0058
100.00 3 0.6000 0.5938 0.0062
100.00 3 0.8000 0.7967 0.0033

In Table 1, we have presented the calculated values of
the normalized guide index & (exact) and &' (the closed-
form solution), for the first few modes of the 2-D guide.
From Table 1 we find that the maximum error is about
0.011 for higher order modes.

7. Conclusions

The approximate solution of the 2-D Eigenvalue
equation expedites the design of the waveguide. The results
for a 2-D waveguide show positive support of reference [6].
For the fundamental mode we found no difference between
our result and those of reference [6]. For higher order
modes we observed a small error around half the value of
the normalized guide index 4 . On the other hand, this error
becomes dominant near cutoff for the 3-D waveguide. Our
exactly coincide with Goell's curve as
b approaches unity, and are better for the whole range of

curves

b versus V curves. Although our closed-form equation is
derived for TE modes, we can also apply this equation for
TM mode [6]. If we adopt the equivalent index method, we
can utilize this closed-form solution for design of the 3-D
rectangular waveguide.
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