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The Wave Propagation in Transversely Isotropic
Composite Laminates

Hyungwon Kim*

ABSTRACT

In transversely isotropic composite laminates, the velocities, the particle directions and the
amplitudes of reflected and transmitted waves were obtained using the equaﬁon of motion, the
constitutive equation, and the displacement equation expressed by wave number and frequency.
Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were
confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the
detection of flaws in transversely isotropic composite laminates by the wate;r immersion C-scan

procedure.
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1. Introduction by an reflected wave

amplitudes. This procedure works well in

analysis of the

Immersion C-scan procedure has become the

method of identifying gross composite defects
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many cases. However, one is concerned with
more subtle defects w}ﬁch are difficult to
identify with conventional data analysis
procedures (e.g., porosity, local variation in

fiber orientation, segregation of reinforcing
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fibers, etc.). Since the defects will principally
affect the local moduli, ultrasonic velocity
measurements are quite useful in analysing
these types of problems. Further, since fiber
reinforced composites are anisotropic materials,
one would ideally like to examine directional
dependence on the properties by measuring all
pertinent elastic moduli. Previous investigators
have performed the ultrasonic tests required to
completely characterize all nine elastic moduli
for orthotropic materials [1-2]. However, this
procedure is rarely used in practice for several
important reasons. These tests were all
conducted using contact transducers at normal
incidence. This approach, while wuseful for
measuring at a given point, is unsuitable for
the scanning of large parts due to the
difficulty of maintaining shear coupling as the
transducer is scanned. An alternative approach
is to use immersion transducer with mode
conversion to generate the required waves
additional to  the

Unfortunately, the mode conversion approach

longitudinal ~ wave.
to the generation of waves in an anisotropic
media is significantly more complicated than
the isotropic case [3]. However, a considerable
degree of simplification can be achieved by
restricting - to the special case of a
unidirectional transversely isotropic composite
materials. The principal objective of this- work
was to develop a simplified method for
analyzing reflection-refraction phenomena in
transversely isotropic materials for arbitrary
angles of incidence. Finally, a method was
determined which was rapid, accurate and
sufficiently compact to be implemented on a
laboratory microcomputer so that it would be
useful for the detection of flaws. The results
were confirmed by T300 Carbon fiber/5208
Epoxy materials.

2. Theory

In an anisotropic media, the equation of motion is
described as follows.

03,5 T Pb; = pu; @
where,  o=stress, u=displacement
p=density, b=body force.

The constitutive equation is
Oij = Cijki€hl @
where, c=stiffness matrix

€ =strain.
And the strain and the displacement relatinship is

1
Substituting equations (2) and (3) into equation (1)
without body force gives the following equation

PU; = CyjpUp, i @

For the cases to be studied, the wave vector for the
incident wave lies in a plane either parallel or
perpendicular to the fiber reinforcement. The incident
wave may be represented as

u; = Aoaiei(klﬁj_ o )
k=wave number
{=wave normal vector
w=fraquency
A y=amplitude

« =polarization vector
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Substituting eq. (5) into eq. (4) gives as
©

— pw’u; = i (— KoL Juy

Rearranging eq. (6) gives the govetning equation as

(A=’ Da=0 @
where,  J=identity matrix
v=velocity

A = cijklljll~

3. Application to Orthotropic Medium

The wave normal for the refracted waves in the

orthotropic media is
cosf’
=0
in#’

Once the wave normal vector is found, A can be
evaluated as

k = | k|=wave number
1 =wave normal.

The slowness swface represents the locus of the
endpoints of the slownes vectors. For as anisotropic
media, there are three distinct sheets of arbitrary
shape. The shape of slowness surface is an important
factor in determining the nature of reflected waves
and refracted waves. The problem tnder consideration
consists of a plane longjtudinal wave in water incident
upon the boundary of a imidirectional composite
parel. For the cases to be studied, the wave vector for
the incident wave lies in a ‘plane either parallel or
perpendicular to the fiber reinforcement.

transducer  transducer|

incident |angle .
water
\
\\
\ COIMPUSItes
Om 0

Fig. 1 Experimental arrangemént of the oblique
wave in the water X

l

¢11€08 260" + ¢555in26" 0 ¢1381n8°cos 8" + c;55inf'cos H°
. . 9 :
A= 0 C66C08 20" + ¢ y5in’0’ 0 ®)
¢38in0"cos @’ + cs5sinbcos §° 0 C55€08 20" + ¢4551n26"

In solving the eigenvalue problem, the most difficult

problem is that the directional cosines of the refracted

wave can not be determined from Srell's law because

of the directional dependence of the wave velocities.
Defining the slowness vector as

m= k=1
w v

where, k=wave vector=| k|

With this geometry, the incident wave may be
represented as
_ Zeiwi"(mi"zk—t)

Uin

Similarly, the reflected longitudinal wave can be

represented as

~ iw'f(mi‘zk—t)
Upre = Aree
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For the transmitted waves, we have

; - iwi(mi —t)
i_ Aie [

where, the superscript i is used to differentiate
between the transmitted work. In order to satisfy
the boundary conditions at the interface, the

frequencies of all waves must be equal, ie

and

MLy, = ML), = Mgy O
which is equivalent to

— in — re _ i
a; = El]km] Vi = Eljkm] Vp = Cijkmjl/k

where,
v= normal to interface
a= constant vector quantity.
In the case that
1
v=1|0
0
and,

i

- 1 cosf

m = v— 0
“\sing"

where, v,, is the velocity in the water and the
negative sign in the slowness vector of the reflected
wave indicates that it is propagating away from the
interface, then we have the Snell’s law as

sinBi": sin&’e: sinf’ (10)

Uy, v v,

w

4. Eigenvalue Problem

,‘———y
z X

OOOOO0 /
000 QOOG 7
[wlelelelsIoe
IS ToTOIe Y
[T PIeTatsIe

Fig. 2 Coordinate  system in

unidirectional reinforced

We can rewrite the Snell’s law as

i . U,L' R . '
sin@* = o sinf™ = kv,
w

for each mode, then eq. (8) becomes the Eigenvalue
problem for v;. Since the pure mode shear wave

could not be excited in the

arrangement, we restrict our attention to the

experimental

characteristic equation of remaining two waves as
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[011(1 ( )2)+055(kvl 2_P’U?]
less (1= (kv;)?) + g9 (kv )® — o]
)=

v,
(013+C55) (k’U) ( (k'l) )2 0

This is a simple equation for v which may

be solved numerically for the two real roots.

5. Amplitude considerations

The particle displacements for the incident

wave are represented as

_ cosf™
Uy = Ao 0
ing™

e (cos™z +sinf™z — wt)

Similarly, the particle displacements for the

reflected wave are

_ cosf"®
U, =A] O
inf"

L
e (— cos0™°z +sinf "z — wt)

For wave propagation in the composite,
similar  expressions for the  generated
quasilongitudinal and quasitransverse waves
are
afhy
ug,=Agg] O ™% (cos 0 9Lx + sinf%%z — wt)
QL
X3
of
~ ik
uor=Agg 0 le"(cos8? s +5inf?"z ~ wt)
QT
g
~QL
Here, the -eigenvectors aQ and aQ are

perpendicular to one another, but in general

L?ﬁl and &QT*iQ

they are

T = (. Therefore,
quasilongitudinal
waves.  Three
fluid solid

calculate the

&QL*Z Q
called as and
quasitransverse boundary
conditions at the interface are

required to reflection and

transmission coefficients at the interface.
(1) Continuity of normal displacement
=y

cbmpositelz =0

uwaterlz =0

which leads to an expression of Snell’s law for

the composite as befo{je as well as the
relationship
AOCOSGM - ATCOSHTe = AQLOCIQL + AQTOleT

(2) Continuity of normal stress

Ull(water)'z =0~ Jl‘l(composite)lrt =0
which becomes as

Ak, [(cos®0™ +sin0™) 4, + (cos?0™ +sin20™ )4,
=cp [AQLal LkQLcos 6% + AQTCIIQT]CQTCOSHQT]

+ey3 [AQLa3 LcosGQL+AQ7a3 kacoseQT]]

(3) Zero transverse stress

Since the fluid can not support a shear stress,
Ul3(water)|z =0~ Jl3(camposite)lz =0

which becomes as

Aok (aftsing®" + af’cos69%)

+ AgrkorlaP’sing?” + afcoss ") = 0
Those yields three equations in three
unknowns which can 'be solved for the
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reflection and transmission coefficients

Ar AQL AQT

W=y Te = Ter= )

6. Results considerations

T300 Carbon fiber/5208 Epoxy composite was
studied for wave propagation at oblique angles
incidence. The stiffness coefficients as

11.2 5 7.1 0
5 11.27.1 0
~ |71 71153 0
10 0 071
0 0 0 071
0 0 0 0 031

9k:g

0
0
00 1y
0 10

oo oo o

and the density p =

The oblique incident beam was projected to a
unidirectionally ~ reinforced compositess in  the
reinforcement plane parallel and perpendicular to the

A) x-y plane (isotropic plane)
(1) longitudinal wave slowness radius:

1
R =—= i

=0.4mm
Uy Cn
(2) SV slowness radius:
1
- Rgy=—= L~ 0.5mm
Vs Caq

(3) SH slowness radius:

H20

&%—“Tg y

composite

Fig. 3 The slowness surface (transversely isotropic plane)

(1) SH wave

RSH(9>=1=\/ —

2 2
€445in°0 + cg4c08 0

*107 3mm

_ P
\/ 7.1sin%0 + 3.1cos %

(2 quasilongitudinal velocity and quasitransverse
velocity

Ry (0

\/M+\/T4N

Rgp(0) = \/ —

—4N
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where,
M= ¢,,c08%0 + capsin®0 + Cyy

N=(c;;c08%0 + c4ysin?0 )¢, cos %0 + ¢ ysin?0)

. 2
— (13 + ¢4y )*sinfcos 0

H20

RV
SH

composite

X

Fig. 4 The slowness surface (parallel to fiber)

the above result, polymethyl
(PMMA)  was It

assumed that the water was not dispersive
(p=0.997g/cm? c = 1480m/s). The density
of PMMA was 1.191g/cm’. Sample size was
2x2 in. with the thickness ranging from 0.1 to

To apply

methacrylate used. was

1.0 in. Date acquisition was achieved using a
Biomation 8100 transient digitizer to convert
the analog transducer output into digital form
and a minicomputer to store the data. The
transient digitizer is capable of sample rates as
high as 100 MHz with a horizontal resolution
of 2048 points and a vertical resolution of 256
points. Using longitudinal wave slowness
radius, plot of phase velocity versus frequency

was presented in Fig. 5.
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Fig. 5 Velogity versus frequency(PMMA)

7. Conclusions

Wave propagation features in the transversely
isotropic materials were evaluated for a microcomputer
based technique. Using oblique angles of incidence,
important  informations (i g
particle directions and the amplitudes of reflected

g the velocities, the

and transmitted waves) about laminate properties
Couldbeobtained_”ﬂﬂsappréachmaybeusedina
scanning mode to detect local flaws of a big composite
motor case if the shell effect does not play an

important role. i
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