Proteomic Analysis of Protein Expression in Streptococcus pneumoniae in Response to Temperature Shift

  • Lee Myoung-Ro (Lab. Of Pathogenic Proteomics, Center for Immunology and Pathology, National Institute of Health, Korea Center for Diseases control and Prevention) ;
  • Bae Song-Mee (Division of Bacterial Respiratory Infections, Center for Infectious Disease, National Institute of Health, Korea Center for Diseases control and Prevention) ;
  • Kim Tong-Soo (Lab. Of Pathogenic Proteomics, Center for Immunology and Pathology, National Institute of Health, Korea Center for Diseases control and Prevention) ;
  • Lee Kwang-Jun (Division of Bacterial Respiratory Infections, Center for Infectious Disease, Lab. of Pathogenic Proteomics, Center for Immunology and Pathology, National Institute of Health, Korea Center for Diseases control and Prevention)
  • Published : 2006.08.01

Abstract

From its initial colonization to causation of disease, Streptococcus pneumoniae has evolved strategies to cope with a number of stressful in vivo environmental conditions. In order to analyze a global view of this organism's response to heat shock, we established a 2-D electrophoresis proteome map of the S. pneumoniae D39 soluble proteins under in vitro culture conditions and performed the comparative proteome analysis to a 37 to $42^{\circ}C$ temperature up-shift in S. pneumoniae. When the temperature of an exponentially growing S. pneumoniae D39 culture was raised to $42^{\circ}C$, the expression level of 25 proteins showed changes when compared to the control. Among these 25 proteins, 12 were identified by MALDI-TOF and LC-coupled ESI MS/MS. The identified proteins were shown to be involved in the general stress response, energy metabolism, nucleotide biosynthesis pathways, and purine metabolism. These results provide clues for understanding the mechanism of adaptation to heat shock by S. pneumoniae and may facilitate the assessment of a possible role for these proteins in the physiology and pathogenesis of this pathogen.

Keywords

References

  1. Boyce, J.D., P.A. Cullen, and B. Adler. 2004. Genomic-scale analysis of bacterial gene and protein expression in the host. Emerg. Infect. Dis. 10, 1357-1362 https://doi.org/10.3201/eid1008.031036
  2. Dinieal, M.M., F.B. Robert, and T. Alexander. 2002. Streptococcus pneumoniae: molecular biology and mechanism of disease. Alexander Tomasz (eds). NY: Mary Ann Liebert, p. 485-491
  3. Dowds, B.C.A. and J.A. Hoch. 1991. Regulation of the oxidative stress response by the hpr gene in Bacillus subtilis. J. Gen. Microbiol. 137, 1121-1125 https://doi.org/10.1099/00221287-137-5-1121
  4. Goulhen, F., D. Grenier, and D. Mayrand. 2003. Oral microbial heat-shock proteins and their potential contributions of infections. Crit. Rev. Oral. Biol. Med. 14, 399-412 https://doi.org/10.1177/154411130301400603
  5. Hamel, J., D. Martin, and B.B. Brodeur. 1997. Heat shock response of Streptococcus pneumoniae : identification of immunoreactive stress proteins. Microb. Pathog. 23, 11-21 https://doi.org/10.1006/mpat.1996.0124
  6. Herbert, B.R., P.M. Mark, A.G. Andrew, J.W. Bradley, G.B. Warren, and L.W. Keith. 1998. Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19, 845-851 https://doi.org/10.1002/elps.1150190540
  7. Heukeshoven, J. and R. Dernick. 1985. Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6, 103-112 https://doi.org/10.1002/elps.1150060302
  8. Klugman, K.P. and C. Feldman. 2001. Streptococcus pneumoniae respiratory tract infections. Curr. Opin. Infect. Dis. 14, 173-179 https://doi.org/10.1097/00001432-200104000-00011
  9. Kyaw, M.H., S. Clarke, I.G. Jones, and H. Campbell. 2002. Incidence of invasive pneumococcal disease in Scotland, 1988-99. Epidemol. Infect. 128, 139-147
  10. Lithgow, J.K., E. Ingham, and S.J. Foster. 2004. Role of the hprT-ftsH locus in Staphylococcus aureus. Microbiology 150, 373-381 https://doi.org/10.1099/mic.0.26674-0
  11. Mizrachi-Nebenzahl, Y., S. Lifshitz, R. Teitelbaum, S. Novick, A. Levi, D. Benharroch, E. Ling, and R. Dagan. 2003. Differential activation of the immune system by virulent Streptococcus pneumoniae strains determines recovery or death of the host. Clin. Exp. Immunol. 134, 23-31 https://doi.org/10.1046/j.1365-2249.2003.02261.x
  12. Mogk, A., C. Schlieker, K.L. Friedrich, H.-J. Schonfeld, E. Vierling, and B. Bukau. 2003. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278, 31033-31042 https://doi.org/10.1074/jbc.M303587200
  13. Mujacic, M., M.W. Bader, and F. Baneyx. 2004. Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Mol. Microbiol. 51, 849-859 https://doi.org/10.1046/j.1365-2958.2003.03871.x
  14. Munier-Lehmann, H., V. Chenal-Francisque, M. Ionescu, P. Christova, J. Foulon, E. Carniel, and O. Barzu. 2003. Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gee renders Yersinia pestis avirulent. Biochem. J. 373, 515-522 https://doi.org/10.1042/BJ20030284
  15. Musher, D.M. 1992. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin. Infect. Dis. 14, 801-809 https://doi.org/10.1093/clinids/14.4.801
  16. Neuhoff, V., N. Arold, D. Taube, and W. Ehrhardt. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255-262 https://doi.org/10.1002/elps.1150090603
  17. Pappin, D.J.C., P. Hojrup, and A.J. Bleasby. 1993. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327-332 https://doi.org/10.1016/0960-9822(93)90195-T
  18. Rabilloud, T. 1996. Solubilization of proteins for electophoretic analyses. Electrophoresis 17, 813-829 https://doi.org/10.1002/elps.1150170503
  19. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins from silverstained polyacrylamide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  20. Tettelin, H., K.E. Nelsion, I.T. Paulsen, J.A. Eisen, T.D. Read, S. Peterson, J. Heidelberg, R.T. DeBoy, D.H. Haft, R.J. Dodson, A.S. Durkin, M. Gwinn, J.F. Kolonay, W.C. Nelson, J.D. Peterson, L.A. Umayam, O. White, S.L. Salzberg, M.R. Lewis, D. Radune, E. Holtzapple, H. Khouri, A.M. Wolf, T.R. Utterback, C.L. Hansen, L.A. McDonald, T.V. Feldblyum, S. Angiuoli, T. Dickinson, E.K. Hickey, I.E. Holt, B.J. Loftus, F. Yang, H.O. Smith, J.C. Venter, B.A. Dougherty, D.A. Morrison, S.K. Hollingshead, and C.M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498-506 https://doi.org/10.1126/science.1061217