Outbreaks of Imipenem-Resistant Acinetobacter baumannii Producing Carbapenemases in Korea

  • Jeong Seok-Hoon (Department of Laboratory Medicine, College of Medicine, Kosin University) ;
  • Bae Il-Kwon (Department of Laboratory Medicine, College of Medicine, Kosin University) ;
  • Park Kwang-Ok (Department of Laboratory Medicine, College of Medicine, Kosin University) ;
  • An Young-Jun (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University) ;
  • Sohn Seung-Ghyu (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University) ;
  • Jang Seon-Ju (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University) ;
  • Sung Kwang-Hoon (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University) ;
  • Yang Ki-Suk (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University) ;
  • Lee Kyung-Won (Research Institute of Bacterial Resistance, Yonsei University College of Medicine) ;
  • Young Dong-Eun (Research Institute of Bacterial Resistance, Yonsei University College of Medicine) ;
  • Lee Sang-Hee (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University)
  • Published : 2006.08.01

Abstract

Among 53 Acinetobacter baumannii isolates collected in 2004, nine imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Korea. Nine carbapenemase-producing isolates were further investigated in order to determine the mechanisms underlying resistance. These isolates were then analyzed via antibiotic susceptibility testing, microbiological tests of carbapenemase activity, pI determination, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. One outbreak involved seven cases of infection by A. baumannii producing OXA-23 ${\beta}-lactamase$, and was found to have been caused by a single ERIC-PCR clone. During the study period, the other outbreak involved two cases of infection by A. baumannii producing IMP-1 ${\beta}-lactamase$. The two clones, one from each of the outbreaks, were characterized via a modified cloverleaf synergy test and an EDTA-disk synergy test. The isoelectric focusing of the crude bacterial extracts detected nitrocefin-positive bands with pI values of 6.65 (OXA-23) and 9.0 (IMP-1). The PCR amplification and characterization of the amplicons via direct sequencing showed that the clonal isolates harbored $bla_{IMP-1}$ or $bla_{oxA-23}$ determinants. The two clones were characterized by a multidrug resistance phenotype that remained unaltered throughout the outbreak. This resistance encompassed penicillins, extended-spectrum cephalosporins, carbapenems, monobactams, and aminoglycosides. These results appear to show that the imipenem resistance observed among nine Korean A. baumannii isolates could be attributed to the spread of an IMP-lor OXA-23-producing clone. Our microbiological test of carbapenemase activity is a simple method for the screening of clinical isolates producing class D carbapenemase and/or class B $metallo-{\beta}-lactamase$, in order both to determine their clinical impact and to prevent further spread.

Keywords

References

  1. Afzal-Shah, M., N. Woodford, and D.M. Livermore. 2001. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D $\beta$-lactamase associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 45, 583-588 https://doi.org/10.1128/AAC.45.2.583-588.2001
  2. Bonnet, R., H. Marchandin, C. Chanal, D. Sirot, R. Labia, C. De Champs, E. Jumas-Bilak, and J. Sirot. 2002. Chromosomeencoded class D-lactamase OXA-23 in Proteus mirabilis. Antimicrob. Agents Chemother. 46, 2004-2006 https://doi.org/10.1128/AAC.46.6.2004-2006.2002
  3. Bou, G., A. Oliver, and J. Martínez-Beltran. 2000. OXA-24, a novel class D $\beta$-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob. Agents Chemother. 44, 1556-1561 https://doi.org/10.1128/AAC.44.6.1556-1561.2000
  4. Brown, S., H.K. Young, and S.G.B. Amyes. 2004. Characterization of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin. Microbiol. Infect. 11, 15-23
  5. Castanheira, M., M.A. Toleman, R.N. Jones, F.J. Schmidt, and T.R. Walsh. 2004. Molecular characterization of a $\beta$-lactamase gene, blaGIM-1, encoding a new subclass of metallo-$\beta$-lactamase. Antimicrob. Agents Chemother. 48, 4654-4661 https://doi.org/10.1128/AAC.48.12.4654-4661.2004
  6. Chastre, J. and J.L. Trouillet. 2000. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin. Resp. Infect. 15, 287-298 https://doi.org/10.1053/srin.2000.20944
  7. Dalla-Costa, L.M., J.M. Coelho, H.A.P.H.M. Souza, M.E.S. Castro, C.J.N. Stier, K.L. Bragagnolo, A. Rea-Neto, S.R. Penteado-Filho, D.M. Livermore, and N. Woodford. 2003. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J. Clin. Microbiol. 41, 3403-3406 https://doi.org/10.1128/JCM.41.7.3403-3406.2003
  8. Dalla-Costa, L.M., K. Irino, J. Rodrigues, I.N.G. Rivera, and L.R. Trabulsi. 1998. Characterization of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR. J. Med. Microbiol. 47, 227-234 https://doi.org/10.1099/00222615-47-3-227
  9. Donald, H.M., W. Scaife, S.G.B. Amyes, and H.K. Young. 2000. Sequence analysis of ARI-1, a novel OXA $\beta$-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother. 44, 196- 199 https://doi.org/10.1128/AAC.44.1.196-199.2000
  10. Heritier, C., L. Poirel, D. Aubert, and P. Nordmann. 2003. Genetic and functional analysis of the chromosomeencoded carbapenem-hydrolyzing oxacillinase OXA-40 of Acinetobacter baumannii. Antimicrob. Agents Chemother. 47, 268-273 https://doi.org/10.1128/AAC.47.1.268-273.2003
  11. Hornstein, M., C. Sautjeau-Rostoker, J. Peduzzi, A. Vessieres, L.T.H. Hong, M. Barthelemy, M. Scavizzi, and R. Labia. 1997. Oxacillin-hydrolyzing $\beta$-lactamase involved in resistance to imipenem in Acinetobacter baumannii. FEMS Microbiol. Lett. 153, 333-339 https://doi.org/10.1016/S0378-1097(97)00270-X
  12. Jeon, B.C., S.H. Jeong, I.K. Bae, S.B. Kwon, K. Lee, D. Young, J.H. Lee, J.S. Song, and S.H. Lee. 2005. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 $\beta$-lactamase in Korea. J. Clin. Microbiol. 43, 2241-2245 https://doi.org/10.1128/JCM.43.5.2241-2245.2005
  13. Jeong, S.H., I.K. Bae, J.H. Lee, S.G. Sohn, G.H. Kang, G.J. Jeon, Y.H. Kim, B.C. Jeong, and S.H. Lee. 2004. Molecular characterization of extended-spectrum $\beta$-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol. 42, 2902-2906 https://doi.org/10.1128/JCM.42.7.2902-2906.2004
  14. Jeong, S.H., I.K. Bae, D. Kim, S.G. Hong, J.S. Song, J.H. Lee, and S.H. Lee. 2005. First outbreak of Klebsiella pneumoniae clinical isolates producing GES-5 and SHV-12 extended-spectrum beta-lactamases in Korea. Antimicrob Agents Chemother. 49, 4809-4810 https://doi.org/10.1128/AAC.49.11.4809-4810.2005
  15. Jeong, S.H., K. Lee, Y. Chong, J.H. Yum, S.H. Lee, H.J. Choi, J.M. Kim, K.H. Park, B.H. Han, S.W. Lee, and T.S. Jeong. 2003. Characterization of a new integron containing VIM-2, a metallo-$\beta$-lactamase gene cassette, in a clinical isolate of Enterobacter cloacae. J. Antimicrob. Chemother. 51, 397-400 https://doi.org/10.1093/jac/dkg047
  16. Laraki, N., N. Franceschini, G.M. Rossolini, P. Santucci, J.M. Frére, and M. Galleni. 1999. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-$\beta$-lactamase IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43, 902-906
  17. Lee, J.H. and S.H. Lee. 2006. Carbapenem resistance in Gramnegative pathogens: Emerging non-metallo-carbapenemases. Res. J. Microbiol. 1, 1-22 https://doi.org/10.3923/jm.2006.1.22
  18. Lee, K., Y. Chong, H.B. Shin, Y.A. Kim, D. Young, and J.H. Yum. 2000. Modified Hodge and EDTA-disk synergy tests to screen metallo-$\beta$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7, 88-102
  19. Lee, S.H., J.Y. Kim, G.S. Lee, S.H. Cheon, Y.J. An, S.H. Jeong, and K.J. Lee. 2002. Characterization of blaCMY-11, an AmpC-type plasmid-mediated $\beta$-lactamase gene in a Korean clinical isolate of Escherichia coli. J. Antimicrob. Chemother. 49, 269-273 https://doi.org/10.1093/jac/49.2.269
  20. Lee, S.H., J.Y. Kim, S.H. Shin, S.K. Lee, M.M. Choi, I.Y. Lee, Y.B. Kim, J.Y Cho, W. Jin, and K.J. Lee. 2001. Restriction fragment length dimorphism-PCR method for the detection of extended-spectrum $\beta$-lactamases unrelated to TEM- and SHV-types. FEMS Microbiol. Lett. 200, 157- 161
  21. Lee, S.H., S.H. Jeong, and S.S. Cha. 2005a. Minimising antibiotic resistance. Lancet Infect. Dis. 5, 668-670 https://doi.org/10.1016/S1473-3099(05)70247-4
  22. Lee, S.M., S.Y. Yoo, H.S. Kim, K.W. Kim, Y.J. Yoon, S.H. Lim, H.Y. Shin, and J.K. Kook. 2005b. Prevalence of putative periodontopathogens in subgingival dental plaques from gingivitis lesions in Korean orthodontic patients. J. Microbiol. 43, 260-265
  23. Livermore, D.M., 2002. The impact of carbapenemases on antimicrobial development and therapy. Curr. Opin. Invest. Drug. 3, 218-224
  24. Luzzaro, F., E. Mantengoli, M. Perilli, G. Lombardi, V. Orlandi, A. Orsayyi, G. Amicosante, G.M. Rossolini, and A. Toniolo. 2001. Dynamics of a nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum $\beta$-lactamase. J. Clin. Microbiol. 39, 1865-1870 https://doi.org/10.1128/JCM.39.5.1865-1870.2001
  25. NCCLS, 2003. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A6, 6th Ed. National Committee for Clinical Laboratory Standards (presently Clinical and Laboratory Standards Institute), Wayne, PA, USA
  26. Oh, E.J., S. Lee, Y.J. Park, J.J. Park, K. Park, S.I. Kim, M.W. Kang, and B.K. Kim. 2003. Prevalence of metallo-$\beta$-lactamase among Pseudomonas aeruginosa in Korean University hospital and comparison of screening methods for detecting metallo-$\beta$-lactamase. J. Microbiol. Method. 54, 411-418 https://doi.org/10.1016/S0167-7012(03)00090-3
  27. Poirel, L., C. Heritier, and P. Nordmann. 2004. Chromosomeencoded Ambler class D $\beta$-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob. Agents Chemother. 48, 348-351 https://doi.org/10.1128/AAC.48.1.348-351.2004
  28. Riccio, M.L., N. Franceschini, L. Boschi, B. Caravelli, G. Cornaglla, R. Fontana, G. Amicosante, and G.M. Rossolini. 2000. Characterization of the metallo-$\beta$-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of blaIMP-1 allelic variants carried by gene cassettes of different phylogeny. Antimicrob. Agents Chemother. 44, 1229-1235 https://doi.org/10.1128/AAC.44.5.1229-1235.2000
  29. Sambrook, J. and D.W. Russell, 2001. Extraction and purification of plasmid; Screening of bacterial colonies by hybridization. In J. Argentine, N. Irwin, K.A. Jassen, S.C. M. Zierler, N. Mclnerny, D. Brown, and S. Schaefer (eds.), Molecular Cloning: a laboratory manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA
  30. Schreckenberger, P.C. and A. Von Graevenitz, 1999. Acinetobacter, Achromobacter, Alcaligenes, Moraxella, Methylobacterium and other non-fermentative Gram-negative rods, pp. 539- 560. In P.R. Murray, E.J. Baron, M.A. Pfaller, F.C Tenover, and R.H. Yolken (eds.), Manual of clinical microbiology, 7th Ed. American Society for Microbiology, Washington, D.C., USA
  31. Silbert, S., M.A. Pfaller, R.J. Hollis, A.L. Barth, and H.S. Sader. 2004. Evaluation of three typing techniques for nonfermentative Gram-negative bacilli. Infect. Cont. Hosp. Ep. 25, 847-851 https://doi.org/10.1086/502307
  32. Silva, G.J., S. Quinteira, E. Bertolo, J.C. Sousa, L. Gallego, A. Duarte, and L. Peixe. 2004. Long-term dissemination of an OXA-40 carbapenemase-producing Acinetobacter baumannii clone in the Iberian Peninsula. J. Antimicrob. Chemother. 54, 255-258 https://doi.org/10.1093/jac/dkh269
  33. Simor, A.E., S.F. Bradley, L.J. Strausbaugh, K. Crossley, and L.E. Nicolle. 2002. An outbreak due to multiresistant Acinetobacter baumannii in a burn unit: risk factors for acquisition and management. Infect. Cont. Hosp. Ep. 23, 261-267 https://doi.org/10.1086/502046
  34. Song, J.S., J.H. Jeon, J.H. Lee, S.H. Jeong, B.C. Jeong, S.J. Kim, J.H. Lee, and S.H. Lee. 2005. Molecular characterization of TEM-type $\beta$-lactamases identified in cold-seep sediments of Edison seamount (south of Lihir Island, Papua New Guinea). J. Microbiol. 43, 172-178
  35. Song, J.S., J.H. Lee, J.H. Lee, B.C. Jeong, W.K. Lee, and S.H. Lee. 2006. Removal of contaminating TEM-1a $\beta$-lactamase gene from commercial Taq DNA polymerase. J. Microbiol. 44, 126-128
  36. Versalovic, J., T. Koeuth, and J.R. Lupski. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19, 6823-6831 https://doi.org/10.1093/nar/19.24.6823
  37. Wachino, J.I., Y. Doi, K. Yamane, N. Shibata, T. Yagi, T. Kubota, and Y. Arakawa. 2004. Molecular characterization of a cephamycin-hydrolyzing and inhibitor-resistant class A $\beta$-lactamase, GES-4, possessing a single G170S substitution on the $\Omega$-loop. Antimicrob. Agents Chemother. 48, 2905-2910 https://doi.org/10.1128/AAC.48.8.2905-2910.2004
  38. Yong, D., J.H. Shin, S. Kim, Y. Lim, J.H. Yum, K. Lee, Y. Chong, and A. Bauernfeind. 2003. High prevalence of PER-1 extended-spectrum $\beta$-lactamase-roducing Acinetobacter spp. in Korea. Antimicrob. Agents Chemother. 47, 1749-1751 https://doi.org/10.1128/AAC.47.5.1749-1751.2003
  39. Zarrilli, R., M. Crispino, M. Bagattini, E. Barretta, A.D. Popolo, M. Triassi, and P. Vollari. 2004. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J. Clin. Microbiol. 42, 946-953 https://doi.org/10.1128/JCM.42.3.946-953.2004