DOI QR코드

DOI QR Code

Mechanical Properties of Ultrafine Grained Materials via Equal-Channel Angular Pressing

ECAP가공에 의한 초미세립 소재의 기계적 물성

  • 고영건 (포항공과대학교 신소재공학과) ;
  • 김우겸 (한양대학교 금속재료공학과) ;
  • 안정용 (한양대학교 금속재료공학과) ;
  • 박경태 (한밭대학교 신소재공학과) ;
  • 이종수 (포항공과대학교 신소재공학과) ;
  • 신동혁 (한양대학교 금속재료공학과)
  • Published : 2006.03.01

Abstract

A study was made to investigate the microstructure and the mechanical properties of low-carbon steel, Al-Mg alloy and Ti-6Al-4V alloy each representing bcc, fcc and hcp crystal structures, respectively fabricated by equal-channel angular(ECA) pressing. After a series of ECA pressings was performed, most grains were significantly refined below ${\mu}m$ in diameter with high mis-orientation of grain boundaries irrespective of different crystal structure used. Regarding the strain hardening capability, tensile tests of ultrafine grain (UFG) dual-phase (ferrite/martensite) steel which was different from UFG ferrite-pearlite steel were carried out at ambient temperature, and corresponding mechanical properties were discussed in relation to modified C-J analysis. Low-temperature and/or high strain-rate superplasticity of the UFG Al-Mg alloy and UFG Ti-6Al-4V alloy were also studied. Based on the analysis used in this study, it was concluded that UFG alloys exhibited the enhanced mechanical properties as compared to coarse-grained (CG) counterparts.

Keywords

References

  1. R. K. Islamgaliev, N. F. Yunusova, R. Z. Valiev, N. K. Tsenev, V. N. Perevezentsev, T. G. Langdon, 2003, Scripta Mater., Vol. 49, p. 467 https://doi.org/10.1016/S1359-6462(03)00291-4
  2. K. Neishi, Z. Horita, T. G. Langdon, 2003, Mater. Sci. Eng., A, Vol. 352, p. 129 https://doi.org/10.1016/S0921-5093(02)00868-7
  3. D. H. Shin, B. C. Kim, Y. S. Kim, K.-T. Park, 2000, Acta Mater., Vol. 48, p. 2247 https://doi.org/10.1016/S1359-6454(00)00028-8
  4. D. H. Shin, B. C. Kim, K.-T. Park, W. Y. Choo, 2000, Acta Mater., Vol. 48, p. 3245 https://doi.org/10.1016/S1359-6454(00)00090-2
  5. K.-T. Park, Y. S. Kim, D. H. Shin, 2001, Metall. Mater. Trans., A, Vol. 32, p. 2373 https://doi.org/10.1007/s11661-001-0211-x
  6. P. H. Chang, A. G. Preban, 1985, Acta Mater., Vol. 33, p. 897 https://doi.org/10.1016/0001-6160(85)90114-2
  7. D. K. Mondal, R. M. Dey, 1992, Mater. Sci. Eng., A Vol. 149, p. 173 https://doi.org/10.1016/0921-5093(92)90378-E
  8. R. E. Reed-Hill, W. R. Cribb, S. N. Monteiro, 1973, Metall. Trans., Vol. 4, p. 2265
  9. H. W. Swift, 1952, J. Mech. Phys. Solids, Vol. 1, p. 1 https://doi.org/10.1016/0022-5096(52)90002-1
  10. K.-T. Park, S. Y. Han, B. D. Ahn, D. H. Shin, Y. K, 2004, Scripta Mater., Vol. 51, p. 909 https://doi.org/10.1016/j.scriptamat.2004.06.017
  11. K.-T. Park, D. Y. Hwang, S. Y. Chang, D. H. Shin, 2002, Metall. Mater. Trans., A, Vol. 33, p. 2859 https://doi.org/10.1007/s11661-002-0271-6
  12. O. V. Mishin, D. J. Jensen, N. Hansen, 2003, Mater. Sci. Eng., A, Vol. 342, p. 320 https://doi.org/10.1016/S0921-5093(02)00311-8
  13. P. J. Apps, J. R. Bowen, P. B. Prangnell, 2003, Acta Mater., Vol. 51, p. 2811 https://doi.org/10.1016/S1359-6454(03)00086-7
  14. Y. G. Ko, W. S. Jung, D. H. Shin, C. S. Lee, 2003, Scripta Mater., Vol. 48, p. 197 https://doi.org/10.1016/S1359-6462(02)00356-1
  15. S. M. Kim, J. Kim, D. H. Shin, Y. G. Ko, C. S. Lee, S. L. Semiatin, 2004, Scripta Mater., Vol. 50, p. 927 https://doi.org/10.1016/j.scriptamat.2004.01.020
  16. A.V. Serqueeva, V. V. Stolyarov, R. Z. Valiev, A. K. Mukherjee, 2000, Scripta Mater., Vol. 43, p. 819 https://doi.org/10.1016/S1359-6462(00)00496-6
  17. R. S. Mishra, V. V. Stolyarov, C. Echer, R. Z. Valiev, A. K. Mukherjee, 2001, Mater. Sci. Eng., A, Vol. 298, p. 44 https://doi.org/10.1016/S0921-5093(00)01338-1
  18. L. Briottet, J. J. Jonas, F. Montheilet, 1964, Acta Mater., Vol. 44, p. 1665 https://doi.org/10.1016/1359-6454(95)00257-X