DOI QR코드

DOI QR Code

Polymeric Arrayed Waveguide Grating Based on Nanoimprint Technique Using a PDMS Stamp

나노임프린트 방법을 이용한 폴리머 광도파로 열 격자

  • Lim, Jung-Gyu (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Ki-Dong (Devices and Materials Lab., LG Electronics Institute of Technology)
  • 임정규 (광운대학교 전자공학과) ;
  • 이상신 (광운대학교 전자공학과) ;
  • 이기동 (LG 전자기술원 소자재료연구소)
  • Published : 2006.04.01

Abstract

A polymeric arrayed waveguide grating (AWG) has been proposed and demonstrated by exploiting the nanoimprint method. A PDMS(polydimethylsiloxane) stamp with device patterns engraved was developed out of a master mold made of quartz glass. The device was fabricated by transferring the pattern in the PDMS stamp to a spin-coated polymer film without using any etching process. The device had 8 output channels, while the center wavelengths of each output channel were positioned from 1543.7 nm to 1548.3 nm with the spacing of 0.8 nm. The achieved average channel crosstalk and the 3-dB bandwidth were about 10 dB and 0.8 nm respectively.

본 논문에서는 폴리머 광도파로 열 격자(arrayed waveguide grating: AWG)를 나노임프린트 방법을 이용하여 제안하고 구현하였다. 빔전파방법을 도입하여 소자를 설계하고 해석하였다. 균일한 접착 및 분리 특성을 갖는 임프린트용 PDMS(polydimethylsiloxane) 스탬프(stamp)를 쿼츠 글래스 물질로 만들어진 마스터 몰드를 이용하여 개발하였다. 이 PDMS 스탬프로 폴리머층을 눌러서 소자 패턴을 형성하고 폴리머를 스핀코팅하여 소자를 완성하였다. 이러한 소자는 식각공정 없이 간단한 스핀코팅과 임프린트 공정만으로 만들어지기 때문에 대량 생산에 적합할 것이다. 제작된 폴리머 AWG 소자의 출력 채널 수는 8개, 채널 간격은 0.8nm, 각 채널의 중심파장은 1543.7nm $\sim$ 1548.3nm 였다. 평균적인 채널 누화와 대역폭은 각각 $\sim$10dB와 0.8nm였다.

Keywords

References

  1. S. J Park and C. H. Lee, 'Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,' J. Lightwave Technology, vol. 22, no. 11, pp. 2582-2591, 2004 https://doi.org/10.1109/JLT.2004.834504
  2. Y. Hibino, 'Recent advances in high-density and largescale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs,' IEEE J. Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002 https://doi.org/10.1109/JSTQE.2002.805965
  3. S. Y. Chou, P. R. Karauss and P. J. Renstrom, 'Nanoimprint lithography,' J. Vac. Sci. Technol. B., vol. 14, no. 16, pp, 4129-4133, 1996 https://doi.org/10.1116/1.588605
  4. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee and P. W. Yoon, 'Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching,' Microelectron. Eng., vol. 78-79, pp. 314-318, 1996
  5. Do-Hwan Kim, Jung-Gyu Im, Seh-Won Ahn, Ki-Dong Lee and Sang-Shin Lee, 'Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer Layer,' IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2352-2354, 2005 https://doi.org/10.1109/LPT.2005.857606
  6. Do-Hwan Kim, Won-Jun Chin and Sang-Shin Lee, 'Tunable polymeric Bragg grating filter using nanoimprint technique.' Appl. Phys. Lett., vol. 88, pp. 071120-1-071120-3, 2006 https://doi.org/10.1063/1.2177353
  7. J. Poon, Y. Huang, G. Paloczi and A.Yariv, 'Soft lithography replica molding of critically coupled polymer microring resonators,' IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2496-2498, 2004 https://doi.org/10.1109/LPT.2004.835610
  8. W. S. Kim, J. H. Lee, S. Y. Shin, Y. C. Kim and B. S. Bae, 'Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,' IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1888-1890, 2004 https://doi.org/10.1109/LPT.2004.831053