DOI QR코드

DOI QR Code

Zero-Order Suppression by Scanning Method in Digital Holographic Microscope

디지털 홀로그래피 현미경에서의 스캐닝 방법을 이용한 영차회절광 제거

  • Published : 2006.04.01

Abstract

A fundamental problem in digital holography is the presence of zero-order noise in the reconstruction process, which decreases the signal to noise ratio(SNR). For many applications, that reduction of SNR makes digital holography impractical, so a great number of approaches have been tested in order to overcome such a problem. In this paper we use the scanning method to suppress the zero-order diffraction noise and the interference noise between object beams. We demonstrate that it is possible to increase the image quality with the scanning method.

디지털 홀로그램에서 영상 재현 시 영차 회절광에 의한 잡음으로 신호대 잡음비가 좋은 영상을 구현하기 어렵다. 이와 같은 이유로 디지털 홀로그램이 여러 분야에 응용되는 것이 어렵다. 영차 회절광 제거를 위하여 많은 노력이 이루어져 왔다. 본 연구에서는 영차 회절광의 영향을 줄이기 위한 홀로그램 데이터를 스캐닝 방법으로 획득하여 수치적 처리를 통하여 영상을 재현하는 실험 연구를 하였다. 그 결과 본 연구에 사용된 방법이 영차 회절광의 효과를 줄이면서 해상도도 유지 할 수 있는 방법임을 알았다.

Keywords

References

  1. J. W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett., vol. 11, pp. 77-79, 1967 https://doi.org/10.1063/1.1755043
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, 'Reconstruction of jplogram with a computer,' Sov. Phys. Tech., vol. 17, pp. 434-444, 1972
  3. G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, 'Investigation of- micro-opto-electro-mechanical components with a holographic microscopic interferometer,' SPIE, vol. 3396, pp. 238-243, 1998
  4. L. Xu, X. Peng, J. Miao, and K. Asundi, 'Studies of digital microscopic with application to microstructure testing,' Appl. Opt.,. vol. 40, pp. 5046-5051, 2001 https://doi.org/10.1364/AO.40.005046
  5. S. Kim, H. Lee, and J. Son, 'Recording of larger object by using two confocal lenses in digital holography,' 한국광학회지, vol. 14, pp. 244-248, 2003
  6. U. Schnars, 'Direct phase determination in hologram interferometry with use of digitally recorded holograms,' J. Opt. Soc. Am., vol. A11, pp. 2011-2015, 1994
  7. C. Wagneer, S. Seebacher, W. Osten, and W. Juptner, 'Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,' Appl. Opt., vol. 38, pp. 4812-4820, 1999 https://doi.org/10.1364/AO.38.004812
  8. Y. Takaki and H. Ohzu, 'Fast numerical reconstruction technique for high resolution hybrid holographic microscopy,' Appl. Opt., vol. 38, pp. 2204-2055, 1999 https://doi.org/10.1364/AO.38.002204
  9. L. Xu, J. Miao, and A. Asundi, 'Properties of digital holography based on in-line configuration,' Opt. Eng., vol. 39, pp. 3214-3219, 1999 https://doi.org/10.1117/1.1327503
  10. M. Takeda, H. Ina, and S. Kobayashi, 'Fourier-Transform method of fringe-pattern analysis for computer-based topography and interferometry,' J. Opt. Soc. Am., vol. 72, pp. 156-160, 1982 https://doi.org/10.1364/JOSA.72.000156
  11. W. W. Macy, 'Two-dimensional fringe-pattern analysis,' Appl. Opt., vol. 22, pp. 3898-3901, 1983 https://doi.org/10.1364/AO.22.003898
  12. K. A. Nugent, 'Interferogram analysis using an accurate fully automatic algorithm,' Appl. Opt., vol. 24, pp. 3101-3105, 1985 https://doi.org/10.1364/AO.24.003101
  13. D. Malacara, Optical Shop Testing(Wiley, New York, 1992) pp. 501-508
  14. M. Servin and F. J. Cuevas, 'A novel technique for spatial phase-shifting interferometry,' J. Mod. Opt., vol. 42, pp. 1853-1862, 1995 https://doi.org/10.1080/09500349514551621
  15. M. Liebling, T. Blu, and M. Unser, 'Complex-wave retrival from a single off-axis hologram,' J. Opt. Soc. Am., vol. A21, pp. 367-377, 2004
  16. E. Cuche, P. Marquet and C. Depeursinge, 'Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,' Appl. Opt. vol. 38, pp. 6994- 7001, 1999 https://doi.org/10.1364/AO.38.006994
  17. U. Schnars and W. Juepther, Digital Holography (Springer, Heidelberg, Germany, 2005) pp. 21-26