DOI QR코드

DOI QR Code

디지털 홀로그래피 현미경에서의 스캐닝 방법을 이용한 영차회절광 제거

Zero-Order Suppression by Scanning Method in Digital Holographic Microscope

  • 발행 : 2006.04.01

초록

디지털 홀로그램에서 영상 재현 시 영차 회절광에 의한 잡음으로 신호대 잡음비가 좋은 영상을 구현하기 어렵다. 이와 같은 이유로 디지털 홀로그램이 여러 분야에 응용되는 것이 어렵다. 영차 회절광 제거를 위하여 많은 노력이 이루어져 왔다. 본 연구에서는 영차 회절광의 영향을 줄이기 위한 홀로그램 데이터를 스캐닝 방법으로 획득하여 수치적 처리를 통하여 영상을 재현하는 실험 연구를 하였다. 그 결과 본 연구에 사용된 방법이 영차 회절광의 효과를 줄이면서 해상도도 유지 할 수 있는 방법임을 알았다.

A fundamental problem in digital holography is the presence of zero-order noise in the reconstruction process, which decreases the signal to noise ratio(SNR). For many applications, that reduction of SNR makes digital holography impractical, so a great number of approaches have been tested in order to overcome such a problem. In this paper we use the scanning method to suppress the zero-order diffraction noise and the interference noise between object beams. We demonstrate that it is possible to increase the image quality with the scanning method.

키워드

참고문헌

  1. J. W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett., vol. 11, pp. 77-79, 1967 https://doi.org/10.1063/1.1755043
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, 'Reconstruction of jplogram with a computer,' Sov. Phys. Tech., vol. 17, pp. 434-444, 1972
  3. G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, 'Investigation of- micro-opto-electro-mechanical components with a holographic microscopic interferometer,' SPIE, vol. 3396, pp. 238-243, 1998
  4. L. Xu, X. Peng, J. Miao, and K. Asundi, 'Studies of digital microscopic with application to microstructure testing,' Appl. Opt.,. vol. 40, pp. 5046-5051, 2001 https://doi.org/10.1364/AO.40.005046
  5. S. Kim, H. Lee, and J. Son, 'Recording of larger object by using two confocal lenses in digital holography,' 한국광학회지, vol. 14, pp. 244-248, 2003
  6. U. Schnars, 'Direct phase determination in hologram interferometry with use of digitally recorded holograms,' J. Opt. Soc. Am., vol. A11, pp. 2011-2015, 1994
  7. C. Wagneer, S. Seebacher, W. Osten, and W. Juptner, 'Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,' Appl. Opt., vol. 38, pp. 4812-4820, 1999 https://doi.org/10.1364/AO.38.004812
  8. Y. Takaki and H. Ohzu, 'Fast numerical reconstruction technique for high resolution hybrid holographic microscopy,' Appl. Opt., vol. 38, pp. 2204-2055, 1999 https://doi.org/10.1364/AO.38.002204
  9. L. Xu, J. Miao, and A. Asundi, 'Properties of digital holography based on in-line configuration,' Opt. Eng., vol. 39, pp. 3214-3219, 1999 https://doi.org/10.1117/1.1327503
  10. M. Takeda, H. Ina, and S. Kobayashi, 'Fourier-Transform method of fringe-pattern analysis for computer-based topography and interferometry,' J. Opt. Soc. Am., vol. 72, pp. 156-160, 1982 https://doi.org/10.1364/JOSA.72.000156
  11. W. W. Macy, 'Two-dimensional fringe-pattern analysis,' Appl. Opt., vol. 22, pp. 3898-3901, 1983 https://doi.org/10.1364/AO.22.003898
  12. K. A. Nugent, 'Interferogram analysis using an accurate fully automatic algorithm,' Appl. Opt., vol. 24, pp. 3101-3105, 1985 https://doi.org/10.1364/AO.24.003101
  13. D. Malacara, Optical Shop Testing(Wiley, New York, 1992) pp. 501-508
  14. M. Servin and F. J. Cuevas, 'A novel technique for spatial phase-shifting interferometry,' J. Mod. Opt., vol. 42, pp. 1853-1862, 1995 https://doi.org/10.1080/09500349514551621
  15. M. Liebling, T. Blu, and M. Unser, 'Complex-wave retrival from a single off-axis hologram,' J. Opt. Soc. Am., vol. A21, pp. 367-377, 2004
  16. E. Cuche, P. Marquet and C. Depeursinge, 'Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,' Appl. Opt. vol. 38, pp. 6994- 7001, 1999 https://doi.org/10.1364/AO.38.006994
  17. U. Schnars and W. Juepther, Digital Holography (Springer, Heidelberg, Germany, 2005) pp. 21-26