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A NOTE ON PARTIAL SIGN-SOLVABILITY

SUK-GEUN HwWANG AND JIN-WO0O PARK

ABSTRACT. In this paper we prove that if Ax = b is a partial sign-
solvable linear system with A being sign non-singular matrix and if
a = {j : z; is sign-determined by Ax = b}, then Aaxa =bs is a
sign-solvable linear system, where Ao denotes the submatrix of A
occupying rows and columns in o and X, and b, are subvectors of
x and b whose components lie in a.

For a sign non-singular matrix A, let Ai,..., Ax be the fully
indecomposable components of A and let ¢; denote the set of row
numbers of A, r = 1,...,k. We also show that if Ax = b is a
partial sign-solvable linear system, then, for »r = 1,...,k, if one of
the components of x4, is a fixed zero solution of Ax = b, then so
are all the components of Xq,..

1. Introduction

For a real number a, the sign of a, sign(a), is defined by

1, if a > 0,
sign(a) = ¢ -1, ifa <0,
0, ifa=0.

For a real matrix A, let Q(A) denote the set of all real matrices
B = [b;;] with the same size as A such that sign(b;;) = sign(as;) for all
1,j. For a matrix A, the matrix obtained from A by replacing each of the
entries by its sign is a (1, —1, 0)-matrix. In that sense, a (1, —1, 0)-matrix
is called a sign-pattern matriz.

Consider a linear system Ax = b, where x = (21,...,2,)7. A com-
ponent z; of x is said to be sign-determined by Ax = b if, for every

A € O(A) and every b € Q(b), z; is determined by AX = b and all
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the elements of the set {Z; : AX =b, A € Q(A4), b € Q(b)} have the
same sign. Such a common sign will be denoted by sign(z; : Ax = b)
in the sequel. In particular, if sign(z; : Ax = b) = 0, then we call z; a
fized zero solution. Ax = b is called partial sign-solvable if at least one
of the components of x is sign-determined by Ax = b [3]. The system
is sign-solvable if all of the components of x are sign-determined [5]. A
matrix A is called an L-matriz if every A € Q(A) has linearly indepen-
dent rows. A square L-matrix is called a sign non-singular matriz (abb.
SNS-matrix) [2]. It is well known that A is an SNS-matrix if and only if
at least one of the n! terms in the expansion of det A is not zero and all
the nonzero terms have the same sign [1, 2, 5]. It is noted in [3] that,
for an m x n matrix A having no p X g zero submatrix, where p+¢q > n,
if Ax = b is partial sign-solvable then AT is an L-matrix. Thus A is a
SNS-matrix if m = n. An n x n matrix is called fully indecomposable if
it contains no p X ¢ zero submatrix, where p + ¢ = n.

Suppose that Ax = b is a partial sign-solvable linear system, where
A is a sign non-singular matrix. Let a = {j : z; is sign-determined
by Ax = b}. Let A, denote the principal submatrix of A occupying
rows and columns in « and let x,, b, denote the subvectors of x and b
respectively whose components lie in a.

In this paper we prove that A,x, = by is a sign-solvable linear system
and that, for j € o,

sign(z; : AaXa = bg) = sign(z; : Ax =b)

unless sign(z; : AoXo = by) = 0 while sign(z; : Ax =b) # 0.
By a theorem of Frobenius [4], A can be transformed into the form

[ A 0] 0] O]
Aoy Ag 0 O

(1.1) : : : Sl

Ap—11 Ag-12 - A1 O

| Ak Ak o0 Agg-1 Ag
where A.,r = 1,...,k, are fully indecomposable matrices by permuta-
tions of rows and columns if necessary. The matrices Aq,..., Ax are
called the fully indecomposable components of A. Foreach r=1,...,k,

let o, denote the set of row numbers of A,. Let x(,b(") denote the
vectors Xq, and by, for brevity.

In this paper we show that if Ax = b is partial sign-solvable, then,
for each r = 1,...,k, either none of the components of x(") is a fixed
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zero solution of Ax = b or all of the components of x(") are fixed zero
solutions.

2. Preliminaries

For an n x n matrix A = [a;;], the digraph D(A) associated with A
is defined as the one whose vertices are 1,2,...,n and there is an arc
i — j in D(A) if and only if a;; # 0. A 1-factor of D(A) is a set of cycles
or loops 71,...,7, such that each of the vertices 1,2,...,n belongs to
exactly one of the 7;’s. A 1-factor of D(A) gives rise to a nonzero term
in the expansion of det A. We call a 1-factor a positive (negative resp.)
1-factor if the product of signs of the arcs in the 1-factor is positive
(negative resp.), where the sign of an arc ¢ — j is defined to be the same
as sign(a;;).

A square matrix A is called éirreducidle if there does not exist a per-
mutation matrix P such that

r |[X O
pare = [¥ 9]
where X and Y are nonvacuous square matrices. Clearly a fully in-
decomposable matrix is an irreducible matrix. A digraph D is called
strongly connected if for any two vertices u,v of D there is a path from
u to v. It is well known that, for a square matrix A, A is irreducible if
and only if D(A) is strongly connected [4].

Given a linear system Ax = b, let Bx = ¢ be the linear system ob-

tained from Ax = b by applying one or more of the following operations.

e Permuting rows of (4,b) .
e Simultaneously permuting columns of A and components of x.
e Multiplying a row of (A4, b) by —1.
e Multiplying a column of A and the corresponding component of x
by —1.
Then Bx = ¢ has the ‘same’ solution as Ax = b .

If A is fully indecomposable, then there are permutation matrices
P, @, R and diagonal matrices D, E with diagonal entries 1 or —1 such
that RDPAQERT has the form (1.1) and has —1’s on its main diagonal.
Assume that A is an nxn SNS-matrix. Suppose that Ax = b is partially
sign-solvable linear system. Since, by the Cramer’s rule,

~__det A(j < b)

= j=1,2,...
LE] detA 3 (.7 ,27 an)a
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where and in the sequel A(j < b) denotes the matrix obtained from
A by replacing the column j by the vector b, it is clear that z; is
sign-determined if and only if either A(j < b) has identically zero de-
terminant or A(j « b) is an SNS-matrix.

In the sequel, for a submatrix B of A, we assume that B uses the
same row number and column number as those in A. From example, if

ai; a2 a3
A= |an ax a3, B [

a2 azs]
ass a
azy a3z ass 2 08
then row 2 and row 3 of B are (a22, a23), (a2, az3) and the column 2 and
column 3 of B are (a2, a32)T, (aos, a33)T. By the same way, the indices
of components of subvectors of x and b will be used.

We close this section with the following lemma.

LEMMA 2.1. Let A be an n x n SNS-matrix with negative main di-
agonal entries and let o C {1,2,...,n}. Then the following hold.
(1) Ay is an SNS-matrix.
(2) If, for some j € «, x; is sign-determined by Ax = b, then z; is
sign-determined by AyX, = bg.

Proof. (1) Since A, is a principal submatrix of A, D(A,) has a 1-
factor. Since every 1-factor of D(A,) gives rise to a 1-factor of A, the
sign non-singularity of A, follows from that of A.

(2) Suppose that j € a and that z; is not sign-determined by AqXxqo =
by. Then A,(j < bg) has both a positive 1-factor and a negative 1-
factor, which yield a positive 1-factor and a negative 1-factor of A(j «
b) since A has negative main diagonal entries, contradicting that x; is
sign-determined by Ax = b. g

3. Main results

We first show that a partial sign-solvable linear system has a sign-
solvable subsystem.

THEOREM 3.1. Let A be an n x n SNS-matrix with negative main
diagonal entries. Let Ax = b be a partial sign-solvable linear system
and let a = {j : z; is sign-determined by Ax = b}. Then the following
hold.

(1) Ay is an SNS-matrix and AyXq = b, is sign-solvable.
(2) For j € q,
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(¢) if x; = 0 is a fixed zero solution of Ax = b, then z; =0 is a
fixed zero solution of AyX, = by, and

(¢4) if z; is not a fixed zero solution of Ax = b, then sign(z; :
AoXo = bg) = sign(z; : Ax = b) unless sign(z; : AaXe =
b,) = 0.

Proof. (1) follows directly from Lemma 2.1.

(2) (i) Every 1-factor of D(A4(j < by)) yields a 1-factor of D(A(j «—
b)). Since z; = 0 is a fixed zero solution of Ax = b, D(A(j «— b)) has
no 1-factor. Therefore D(A4(j < by)) has no 1-factor, telling us that
An(J < bg) has identically zero determinant.

(#) Suppose that z; is not a fixed zero solution of Ax = b. Let
|| = m, where |a| stands for the number of elements of a. Then
sign(det A(j « b)) = (=1)""™sign(det Ao(j «— ba)) unless Ay(j «
b,) has identically zero determinant. Since sign(det A) = (=1)™™
sign(det A,) we see that

det Ao(j «— by) det A(j «— b)
det A, ’ det A
have the same sign unless det Ay (j +— bg) = 0. Il

It may well be possible that sign(z; : Aaxa = be) = 0 even though
sign(z; : Ax = b) # 0 as we see in the following example.

ExAMPLE 3.2. Let

-1 1 1 0 -1

o -1 1 0 -1
A= -1 -1 -1 0 » b= 01’

0 0 -1 -1 0

and let x = (1,22, 3,74)7 be a solution of Ax = b. Then sign(zs :
Ax = b) = —sign(zs : Ax = b) = —1, but z3 and z4 are fixed zero
solutions in the sign-solvable subsystem

LS

In the rest of this section we investigate the distribution of fixed zero
solutions of a partial sign-solvable linear system.

LEMMA 3.3. Let A be a fully indecomposable SNS-matrix and let
Ax = b be a partial sign-solvable linear system. Then the following are
equivalent.

(1) Ax = b has a fixed zero solution.
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(2) b=0.
(3) Every component of x is a fixed zero solution of Ax = b.

Proof. (1) = (2) Suppose that b = (b,...,b,)T # 0. Then b; #
0 for some i. Since z; = 0 is a fixed zero solution of Ax = b, it
follows that A(j « b) has identically zero determinant. Since the (4, j)-
entry of A(j «— b) , which is b;, is not zero, it follows that A(i|5), the
(n —1) x (n — 1) matrix obtained from A by deleting the row i and the
column j, has identically zero determinant so that there exist a p x ¢
zero submatrix of A(i|j), where p 4+ ¢ = (n — 1) + 1, contradicting the
fully indecomposability of A.

(2) = (3) and (3) = (1) are clear. O
LEMMA 3.4. Let A be a square matrix of the form
(47 O O By
By A, O O
A= * B3 0 0
A1 O
| % B, Al

where A, is fully indecomposable and B, # O for eachr = 1,2,... k.
Then D(A) has a 1-factor.

Proof. If, for some distinct p,q € {1,...,k}, there is an arc in D(A)
from a vertex of D(A,) to a vertex of D(A,), we simply say that there
is an arc from D(A,) to D(A4). By the structure of A, we see that there
is an arc e, from D(A,) to D(A,_1) for each r = 1,2,...,k, where we
assume that Ay equals Ay. Since D(A,) is strongly connected for each
r=1,...,k, there occurs a cycle in D(A) containing all e,’s as its part,
and the lemma is proved. O

Now we are ready to prove our last main theorem.

THEOREM 3.5. Let A be an SNS-matrix of the form (1.1) with neg-
ative main diagonal entries. Then for each r = 1,...,k, either non of
the components of X,, is a fixed zero solution of Ax = b or all of the
components of X, are fixed zero solutions of Ax = b. Moreover, in the
latter case, by, = 0.

Proof. We write x(™ and b(") instead of x,, and by, for the sake of
simplicity. We prove the theorem by induction on k.
The theorem for k = 1 follows directly from Lemma 3.3.
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Let k£ > 2. In the proof of the theorem, we shall call a diagonal block
A, an isolated block if all the blocks in the block row r are O’s except
for A, and if b, = 0.

Let z; = 0 is a fixed zero solution of Ax = b, where j € .

Suppose that non of Aj,..., A, is an isolated block. Then, first of
all, by # 0 because A; is not an isolated block. If b, # 0, then there
is an i € op such that b; # 0. A(j < b)a, = Ap(j < by) . Note
that b, # 0 is the (4,7)-entry of A,(j < bp) so that there is an arc
e in D(Ap(j — bp)). Remember that A,(j «— bp) uses the same row
numbers and column numbers. Since A4, is strongly connected there is a
path «y from j to 7 in D(A,) and hence in D(Ap(j < bp)). Now, the path
7 together with the preceded arc e gives rise to a 1-factor of A,(j < bp)
which yields a 1-factor of A(j < b), contradicting that z; = 0 is a fixed
zero solution of Ax = b. Thus b, = 0. Since by # 0, it must be that
p > 2. We claim that there exists a sequence 71, ...,y such that p =
TL>Te> > 21, Apry O, Aryrs O, Ar i # O and
b, # 0. Since A, is not isolated and by, = 0, [Ap1,..., App-1] # O and
hence there is an r9 < p such that Ay, # O. If b, # 0, then we end up
with the sequence p, 2. If b, = 0, then since [Ar,1, ..., Aryro—1] # O,
there is an r3 < ry such that A, # O. If b,; # 0, then we are done.
Otherwise we repeat this process. Eventually we will end up with a
sequence with the required property because by # 0. Thus there occurs
a 1-factor of A(j «— b) by Lemma 3.4 contradicting that z; = 0 is a fixed
zero solution of Ax = b. Therefore it is shown that A, is an isolated
block for some ¢ € {1,...,p}.

Now the system Ax = b can be written as

Axg=0
Apxg = bg,
where § = {1,...,n} — a4, and it follows, by induction, that every
component of x,, is a fixed zero solution of Ax = b. O
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