A NOTE ON PARTIAL SIGN-SOLVABILITY

SUK-GEUN HWANG AND JIN-WOO PARK

ABSTRACT. In this paper we prove that if $A\mathbf{x} = \mathbf{b}$ is a partial sign-solvable linear system with A being sign non-singular matrix and if $\alpha = \{j : x_j \text{ is sign-determined by } A\mathbf{x} = \mathbf{b}\}$, then $A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}$ is a sign-solvable linear system, where A_{α} denotes the submatrix of A occupying rows and columns in α and \mathbf{x}_{α} and \mathbf{b}_{α} are subvectors of \mathbf{x} and \mathbf{b} whose components lie in α .

For a sign non-singular matrix A, let A_1, \ldots, A_k be the fully indecomposable components of A and let α_i denote the set of row numbers of A_r , $r=1,\ldots,k$. We also show that if $A\mathbf{x}=\mathbf{b}$ is a partial sign-solvable linear system, then, for $r=1,\ldots,k$, if one of the components of \mathbf{x}_{α_r} is a fixed zero solution of $A\mathbf{x}=\mathbf{b}$, then so are all the components of \mathbf{x}_{α_r} .

1. Introduction

For a real number a, the sign of a, sign(a), is defined by

$$sign(a) = \begin{cases} 1, & \text{if } a > 0, \\ -1, & \text{if } a < 0, \\ 0, & \text{if } a = 0. \end{cases}$$

For a real matrix A, let $\mathcal{Q}(A)$ denote the set of all real matrices $B = [b_{ij}]$ with the same size as A such that $\operatorname{sign}(b_{ij}) = \operatorname{sign}(a_{ij})$ for all i, j. For a matrix A, the matrix obtained from A by replacing each of the entries by its sign is a (1, -1, 0)-matrix. In that sense, a (1, -1, 0)-matrix is called a $\operatorname{sign-pattern}$ matrix.

Consider a linear system $A\mathbf{x} = \mathbf{b}$, where $\mathbf{x} = (x_1, \dots, x_n)^T$. A component x_j of \mathbf{x} is said to be sign-determined by $A\mathbf{x} = \mathbf{b}$ if, for every $\widetilde{A} \in \mathcal{Q}(A)$ and every $\widetilde{\mathbf{b}} \in \mathcal{Q}(\mathbf{b})$, $\widetilde{x_j}$ is determined by $\widetilde{A}\widetilde{\mathbf{x}} = \widetilde{\mathbf{b}}$ and all

Received February 25, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 15A99.

Key words and phrases: sign-solvable linear system, partial sign-solvable linear system.

This work was supported by the SRC/ERC program of MOST/KOSEF (grant # R11-1999-054).

the elements of the set $\{\widetilde{x_j}: \widetilde{A}\widetilde{\mathbf{x}} = \widetilde{\mathbf{b}}, \ \widetilde{A} \in \mathcal{Q}(A), \ \widetilde{\mathbf{b}} \in \mathcal{Q}(\mathbf{b})\}$ have the same sign. Such a common sign will be denoted by $\operatorname{sign}(x_j: A\mathbf{x} = \mathbf{b})$ in the sequel. In particular, if $\operatorname{sign}(x_j: A\mathbf{x} = \mathbf{b}) = 0$, then we call x_j a fixed zero solution. $A\mathbf{x} = \mathbf{b}$ is called partial sign-solvable if at least one of the components of \mathbf{x} is sign-determined by $A\mathbf{x} = \mathbf{b}$ [3]. The system is sign-solvable if all of the components of \mathbf{x} are sign-determined [5]. A matrix A is called an L-matrix if every $\widetilde{A} \in \mathcal{Q}(A)$ has linearly independent rows. A square L-matrix is called a sign non-singular matrix (abb. SNS-matrix) [2]. It is well known that A is an SNS-matrix if and only if at least one of the n! terms in the expansion of det A is not zero and all the nonzero terms have the same sign [1, 2, 5]. It is noted in [3] that, for an $m \times n$ matrix A having no $p \times q$ zero submatrix, where $p + q \geq n$, if $A\mathbf{x} = \mathbf{b}$ is partial sign-solvable then A^T is an L-matrix. Thus A is a SNS-matrix if m = n. An $n \times n$ matrix is called fully indecomposable if it contains no $p \times q$ zero submatrix, where p + q = n.

Suppose that $A\mathbf{x} = \mathbf{b}$ is a partial sign-solvable linear system, where A is a sign non-singular matrix. Let $\alpha = \{j : x_j \text{ is sign-determined by } A\mathbf{x} = \mathbf{b}\}$. Let A_{α} denote the principal submatrix of A occupying rows and columns in α and let \mathbf{x}_{α} , \mathbf{b}_{α} denote the subvectors of \mathbf{x} and \mathbf{b} respectively whose components lie in α .

In this paper we prove that $A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}$ is a sign-solvable linear system and that, for $j \in \alpha$,

$$\operatorname{sign}(x_j : A_{\alpha} \mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}) = \operatorname{sign}(x_j : A\mathbf{x} = \mathbf{b})$$

unless $sign(x_j : A_{\alpha} \mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}) = 0$ while $sign(x_j : A\mathbf{x} = \mathbf{b}) \neq 0$.

By a theorem of Frobenius [4], A can be transformed into the form

(1.1)
$$\begin{bmatrix} A_1 & O & \cdots & O & O \\ A_{21} & A_2 & \cdots & O & O \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{k-1,1} & A_{k-1,2} & \cdots & A_{k-1} & O \\ A_{k1} & A_{k2} & \cdots & A_{k,k-1} & A_k \end{bmatrix},$$

where $A_r, r = 1, ..., k$, are fully indecomposable matrices by permutations of rows and columns if necessary. The matrices $A_1, ..., A_k$ are called the *fully indecomposable components* of A. For each r = 1, ..., k, let α_r denote the set of row numbers of A_r . Let $\mathbf{x}^{(r)}, \mathbf{b}^{(r)}$ denote the vectors \mathbf{x}_{α_r} and \mathbf{b}_{α_r} for brevity.

In this paper we show that if $A\mathbf{x} = \mathbf{b}$ is partial sign-solvable, then, for each $r = 1, \dots, k$, either none of the components of $\mathbf{x}^{(r)}$ is a fixed

zero solution of $A\mathbf{x} = \mathbf{b}$ or all of the components of $\mathbf{x}^{(r)}$ are fixed zero solutions.

2. Preliminaries

For an $n \times n$ matrix $A = [a_{ij}]$, the digraph $\mathcal{D}(A)$ associated with A is defined as the one whose vertices are $1, 2, \ldots, n$ and there is an arc $i \to j$ in $\mathcal{D}(A)$ if and only if $a_{ij} \neq 0$. A 1-factor of $\mathcal{D}(A)$ is a set of cycles or loops $\gamma_1, \ldots, \gamma_k$ such that each of the vertices $1, 2, \ldots, n$ belongs to exactly one of the γ_i 's. A 1-factor of $\mathcal{D}(A)$ gives rise to a nonzero term in the expansion of det A. We call a 1-factor a positive (negative resp.) 1-factor if the product of signs of the arcs in the 1-factor is positive (negative resp.), where the sign of an arc $i \to j$ is defined to be the same as $\operatorname{sign}(a_{ij})$.

A square matrix A is called irreducible if there does not exist a permutation matrix P such that

$$PAP^T = \begin{bmatrix} X & O \\ * & Y \end{bmatrix},$$

where X and Y are nonvacuous square matrices. Clearly a fully indecomposable matrix is an irreducible matrix. A digraph \mathcal{D} is called strongly connected if for any two vertices u, v of \mathcal{D} there is a path from u to v. It is well known that, for a square matrix A, A is irreducible if and only if $\mathcal{D}(A)$ is strongly connected [4].

Given a linear system $A\mathbf{x} = \mathbf{b}$, let $B\mathbf{x} = \mathbf{c}$ be the linear system obtained from $A\mathbf{x} = \mathbf{b}$ by applying one or more of the following operations.

- Permuting rows of (A, \mathbf{b}) .
- Simultaneously permuting columns of A and components of \mathbf{x} .
- Multiplying a row of (A, \mathbf{b}) by -1.
- Multiplying a column of A and the corresponding component of \mathbf{x} by -1.

Then $B\mathbf{x} = \mathbf{c}$ has the 'same' solution as $A\mathbf{x} = \mathbf{b}$.

If A is fully indecomposable, then there are permutation matrices P, Q, R and diagonal matrices D, E with diagonal entries 1 or -1 such that $RDPAQER^T$ has the form (1.1) and has -1's on its main diagonal. Assume that A is an $n \times n$ SNS-matrix. Suppose that $A\mathbf{x} = \mathbf{b}$ is partially sign-solvable linear system. Since, by the Cramer's rule,

$$x_j = \frac{\det A(j \leftarrow \mathbf{b})}{\det A}, \ (j = 1, 2, \dots, n),$$

where and in the sequel $A(j \leftarrow \mathbf{b})$ denotes the matrix obtained from A by replacing the column j by the vector \mathbf{b} , it is clear that x_j is sign-determined if and only if either $A(j \leftarrow \mathbf{b})$ has identically zero determinant or $A(j \leftarrow \mathbf{b})$ is an SNS-matrix.

In the sequel, for a submatrix B of A, we assume that B uses the same row number and column number as those in A. From example, if

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}, \ B = egin{bmatrix} a_{22} & a_{23} \ a_{32} & a_{33} \end{bmatrix}$$

then row 2 and row 3 of B are $(a_{22}, a_{23}), (a_{32}, a_{33})$ and the column 2 and column 3 of B are $(a_{22}, a_{32})^T, (a_{23}, a_{33})^T$. By the same way, the indices of components of subvectors of \mathbf{x} and \mathbf{b} will be used.

We close this section with the following lemma.

LEMMA 2.1. Let A be an $n \times n$ SNS-matrix with negative main diagonal entries and let $\alpha \subset \{1, 2, ..., n\}$. Then the following hold.

- (1) A_{α} is an SNS-matrix.
- (2) If, for some $j \in \alpha$, x_j is sign-determined by $A\mathbf{x} = \mathbf{b}$, then x_j is sign-determined by $A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}$.
- *Proof.* (1) Since A_{α} is a principal submatrix of A, $\mathcal{D}(A_{\alpha})$ has a 1-factor. Since every 1-factor of $\mathcal{D}(A_{\alpha})$ gives rise to a 1-factor of A, the sign non-singularity of A_{α} follows from that of A.
- (2) Suppose that $j \in \alpha$ and that x_j is not sign-determined by $A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}$. Then $A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha})$ has both a positive 1-factor and a negative 1-factor, which yield a positive 1-factor and a negative 1-factor of $A(j \leftarrow \mathbf{b})$ since A has negative main diagonal entries, contradicting that x_j is sign-determined by $A\mathbf{x} = \mathbf{b}$.

3. Main results

We first show that a partial sign-solvable linear system has a sign-solvable subsystem.

THEOREM 3.1. Let A be an $n \times n$ SNS-matrix with negative main diagonal entries. Let $A\mathbf{x} = \mathbf{b}$ be a partial sign-solvable linear system and let $\alpha = \{j : x_j \text{ is sign-determined by } A\mathbf{x} = \mathbf{b}\}$. Then the following hold.

- (1) A_{α} is an SNS-matrix and $A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}$ is sign-solvable.
- (2) For $j \in \alpha$,

- (i) if $x_j = 0$ is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$, then $x_j = 0$ is a fixed zero solution of $A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}$, and
- (ii) if x_j is not a fixed zero solution of $A\mathbf{x} = \mathbf{b}$, then $\operatorname{sign}(x_j : A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}) = \operatorname{sign}(x_j : A\mathbf{x} = \mathbf{b})$ unless $\operatorname{sign}(x_j : A_{\alpha}\mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}) = 0$.

Proof. (1) follows directly from Lemma 2.1.

- (2) (i) Every 1-factor of $\mathcal{D}(A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha}))$ yields a 1-factor of $\mathcal{D}(A(j \leftarrow \mathbf{b}))$. Since $x_j = 0$ is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$, $\mathcal{D}(A(j \leftarrow \mathbf{b}))$ has no 1-factor. Therefore $\mathcal{D}(A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha}))$ has no 1-factor, telling us that $A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha})$ has identically zero determinant.
- (ii) Suppose that x_j is not a fixed zero solution of $A\mathbf{x} = \mathbf{b}$. Let $|\alpha| = m$, where $|\alpha|$ stands for the number of elements of α . Then $\operatorname{sign}(\det A(j \leftarrow \mathbf{b})) = (-1)^{n-m} \operatorname{sign}(\det A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha}))$ unless $A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha})$ has identically zero determinant. Since $\operatorname{sign}(\det A) = (-1)^{n-m} \operatorname{sign}(\det A_{\alpha})$ we see that

$$\frac{\det A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha})}{\det A_{\alpha}}, \ \frac{\det A(j \leftarrow \mathbf{b})}{\det A}$$

have the same sign unless det $A_{\alpha}(j \leftarrow \mathbf{b}_{\alpha}) = 0$.

It may well be possible that $sign(x_j : A_{\alpha} \mathbf{x}_{\alpha} = \mathbf{b}_{\alpha}) = 0$ even though $sign(x_j : A\mathbf{x} = \mathbf{b}) \neq 0$ as we see in the following example.

Example 3.2. Let

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & -1 & -1 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix},$$

and let $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ be a solution of $A\mathbf{x} = \mathbf{b}$. Then $\operatorname{sign}(x_3 : A\mathbf{x} = \mathbf{b}) = -\operatorname{sign}(x_4 : A\mathbf{x} = \mathbf{b}) = -1$, but x_3 and x_4 are fixed zero solutions in the sign-solvable subsystem

$$\begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

In the rest of this section we investigate the distribution of fixed zero solutions of a partial sign-solvable linear system.

LEMMA 3.3. Let A be a fully indecomposable SNS-matrix and let $A\mathbf{x} = \mathbf{b}$ be a partial sign-solvable linear system. Then the following are equivalent.

(1) $A\mathbf{x} = \mathbf{b}$ has a fixed zero solution.

- (2) b = 0.
- (3) Every component of \mathbf{x} is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$.

Proof. (1) \Rightarrow (2) Suppose that $\mathbf{b} = (b_1, \dots, b_n)^T \neq \mathbf{0}$. Then $b_i \neq 0$ for some i. Since $x_j = 0$ is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$, it follows that $A(j \leftarrow \mathbf{b})$ has identically zero determinant. Since the (i, j)-entry of $A(j \leftarrow \mathbf{b})$, which is b_i , is not zero, it follows that A(i|j), the $(n-1) \times (n-1)$ matrix obtained from A by deleting the row i and the column j, has identically zero determinant so that there exist a $p \times q$ zero submatrix of A(i|j), where p+q=(n-1)+1, contradicting the fully indecomposability of A.

$$(2) \Rightarrow (3)$$
 and $(3) \Rightarrow (1)$ are clear.

LEMMA 3.4. Let A be a square matrix of the form

$$A = \begin{bmatrix} A_1 & O & \cdots & O & B_1 \\ B_2 & A_2 & \cdots & O & O \\ * & B_3 & \ddots & O & O \\ \vdots & \vdots & \ddots & A_{k-1} & O \\ * & * & \cdots & B_k & A_k \end{bmatrix},$$

where A_r is fully indecomposable and $B_r \neq O$ for each r = 1, 2, ..., k. Then $\mathcal{D}(A)$ has a 1-factor.

Proof. If, for some distinct $p, q \in \{1, \ldots, k\}$, there is an arc in $\mathcal{D}(A)$ from a vertex of $\mathcal{D}(A_p)$ to a vertex of $\mathcal{D}(A_q)$, we simply say that there is an arc from $\mathcal{D}(A_p)$ to $\mathcal{D}(A_q)$. By the structure of A, we see that there is an arc e_r from $\mathcal{D}(A_r)$ to $\mathcal{D}(A_{r-1})$ for each $r=1,2,\ldots,k$, where we assume that A_0 equals A_k . Since $\mathcal{D}(A_r)$ is strongly connected for each $r=1,\ldots,k$, there occurs a cycle in $\mathcal{D}(A)$ containing all e_r 's as its part, and the lemma is proved.

Now we are ready to prove our last main theorem.

THEOREM 3.5. Let A be an SNS-matrix of the form (1.1) with negative main diagonal entries. Then for each r = 1, ..., k, either non of the components of \mathbf{x}_{α_r} is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$ or all of the components of \mathbf{x}_{α_r} are fixed zero solutions of $A\mathbf{x} = \mathbf{b}$. Moreover, in the latter case, $\mathbf{b}_{\alpha_r} = \mathbf{0}$.

Proof. We write $\mathbf{x}^{(r)}$ and $\mathbf{b}^{(r)}$ instead of \mathbf{x}_{α_r} and \mathbf{b}_{α_r} for the sake of simplicity. We prove the theorem by induction on k.

The theorem for k = 1 follows directly from Lemma 3.3.

Let $k \geq 2$. In the proof of the theorem, we shall call a diagonal block A_r an *isolated block* if all the blocks in the block row r are O's except for A_r and if $\mathbf{b}_r = \mathbf{0}$.

Let $x_j = 0$ is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$, where $j \in \alpha_p$.

Suppose that non of A_1, \ldots, A_p is an isolated block. Then, first of all, $\mathbf{b}_1 \neq \mathbf{0}$ because A_1 is not an isolated block. If $\mathbf{b}_p \neq \mathbf{0}$, then there is an $i \in \alpha_p$ such that $b_i \neq 0$. $A(j \leftarrow \mathbf{b})_{\alpha_p} = A_p(j \leftarrow \mathbf{b}_p)$. Note that $b_i \neq 0$ is the (i,j)-entry of $A_p(j \leftarrow \mathbf{b}_p)$ so that there is an arc e in $\mathcal{D}(A_p(j \leftarrow \mathbf{b}_p))$. Remember that $A_p(j \leftarrow \mathbf{b}_p)$ uses the same row numbers and column numbers. Since A_p is strongly connected there is a path γ from j to i in $\mathcal{D}(A_p)$ and hence in $\mathcal{D}(A_p(j \leftarrow \mathbf{b}_p))$. Now, the path γ together with the preceded arc e gives rise to a 1-factor of $A_p(j \leftarrow \mathbf{b}_p)$ which yields a 1-factor of $A(j \leftarrow \mathbf{b})$, contradicting that $x_j = 0$ is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$. Thus $\mathbf{b}_p = \mathbf{0}$. Since $\mathbf{b}_1 \neq \mathbf{0}$, it must be that $p \geq 2$. We claim that there exists a sequence r_1, \ldots, r_m such that p = $r_1 > r_2 > \dots > r_m \ge 1, A_{r_1 r_2} \ne O, A_{r_2 r_3} \ne O, \dots, A_{r_{m-1} r_m} \ne O$ and $\mathbf{b}_m \neq \mathbf{0}$. Since A_p is not isolated and $\mathbf{b}_p = \mathbf{0}$, $[A_{p1}, \dots, A_{p,p-1}] \neq O$ and hence there is an $r_2 < p$ such that $A_{pr_2} \neq O$. If $\mathbf{b}_{r_2} \neq \mathbf{0}$, then we end up with the sequence p, r_2 . If $\mathbf{b}_{r_2} = \mathbf{0}$, then since $[A_{r_21}, \dots, A_{r_2, r_2-1}] \neq O$, there is an $r_3 < r_2$ such that $A_{r_2r_3} \neq O$. If $\mathbf{b}_{r_3} \neq \mathbf{0}$, then we are done. Otherwise we repeat this process. Eventually we will end up with a sequence with the required property because $\mathbf{b}_1 \neq \mathbf{0}$. Thus there occurs a 1-factor of $A(j \leftarrow \mathbf{b})$ by Lemma 3.4 contradicting that $x_j = 0$ is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$. Therefore it is shown that A_q is an isolated block for some $q \in \{1, \ldots, p\}$.

Now the system $A\mathbf{x} = \mathbf{b}$ can be written as

$$\begin{cases} A_q \mathbf{x}_q = \mathbf{0} \\ A_{\beta} \mathbf{x}_{\beta} = \mathbf{b}_{\beta}, \end{cases}$$

where $\beta = \{1, ..., n\} - \alpha_q$, and it follows, by induction, that every component of \mathbf{x}_p is a fixed zero solution of $A\mathbf{x} = \mathbf{b}$.

References

- L. Bassett, The scope of qualitative economics, Rev. Econ. Studies 29 (1962), 99-132.
- [2] L. Bassett, J. Maybee, and J. Quirk, Qualitative economics and the scope of the correspondence pronciple, Econometrica 36 (1968), 544-563.
- [3] R. A. Brualdi and B. L. Shader, *Matrices of sign-solvable linear systems*, Cambridge University Press, New York, 1995.
- [4] H. Minc, Nonnegative matrices, Wiley, New York, 1988.

[5] P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, 1947, Atheneum, New York, 1971.

DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA *E-mail*: sghwang@knu.ac.kr

jwpark2000@kebi.com