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THE SEQUENTIAL UNIFORM
LAW OF LARGE NUMBERS

JONGSIG BAE AND SUNGYEUN KIM

ABSTRACT. Let Z,(s, f) =n~?! Zizsll(f(Xl) — Pf) be the sequen-
tial empirical process based on the independent and identically dis-
tributed random variables. We prove that convergence problems
of sup(, 5y |Zn(s, f)| to zero boil down to those of sup; |Z.(1, f)|.
We employ Ottaviani’s inequality and the complete convergence to
establish, under bracketing entropy with the second moment, the
almost sure convergence of sup, r |Zn(s, f)| to zero.

1. Introduction and the main result

Let Xi,...,X, be independent and identically distributed random
variables. Let {D,} be the sequential process defined by

[ns]
(1.1) Dp(s) =n~Y? ZXi for 0 < s <1,
i=1
where [z] denotes the integral part of z. It is well known that, under the
topic of Donsker’s invariance principle, the process Dy, in (1.1) converges
weakly to a Gaussian process. See, for example, Billingsley [1].
We have encountered the sequential process {Gr} defined by
[ns]
(1.2) Gn(s) =n"1 ZXi for0<s<1
i=1
in mathematical finance literatures. See Shreve [6].
The fact that G,(s) converges almost surely to sEX; for each fixed
s € [0,1] is well known as a strong law of large numbers.
It is surprising that the following question is not yet settled down.
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QUESTION. What are the asymptotic behaviors of
sup |Gn(s)|?
0<s<1

In this paper we provide a solution to the question by Ottaviani’s
inequality and complete convergence.

We begin by formulating the above question.

Let {X; : ¢ > 1} be a sequence of independent and identically
distributed random variables defined on a probability space (Q, A, P).
Given a Borel measurable function f : R — R, we see that {f(X;) : ¢ >
1} forms a sequence of independent and identically distributed random
variables that are more flexible in applications than {X; : ¢ > 1}.

We state the following sequential strong law of large numbers.

THEOREM 1.1. Suppose that [ f%(z)P(dz) < co. Then,
[ns]

1
sup |— Z(f(Xi) — Pf)| — 0 almost surely.
0<s<1 | =1

The proof of Theorem 1.1 will be given at the end of the paper.

2. Sequential Glivenko-Cantelli classes

In addition to the setting in previous section, we consider a class F of
real-valued Borel measurable functions defined on R. Define a sequential
empirical process Z, by

[ns]
1
Zn(s, f) = = > _(f(X3) = Pf) for (s, f) € [0,1] @ F.
i=1
Define the empirical measure by

P,(f) == f(X;) for f € F.
i=1

3|

Observe that

—

ns
Za(s ) = "By - IO
and
Zn(1,f) = (Pn — P)(f)
For a process {Y;} indexed by an arbitrary set, we denote ||Y|| to
mean sup, |Y:|. Let P* denote the outer probability with respect to the

underlying probability P.
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We need the following Ottaviani’s inequality.

LEMMA 2.1. Let Xy,..., X, be independent stochastic processes in-
dexed by an arbitrary set. Let S, := X1+ ---+ X,,. Then for A\, u > 0,

. P*(||Sn]| > A)
P*{ max ||Sk|| > A+ <
(1§k§nH Hl u) = 1 —maxi<g<n P* (||Sn — Skl| > )

Proof. See Proposition A.1.1 in Van der Vaart and Wellner [8]. O

We obtain the following maximal inequality that illuminates the role
of s € [0, 1] is negligible in the problem of law of large numbers. Compare
with the role of s € [0,1] in the problem of central limit theorem in
section 2.12 in Van der Vaart and Wellner [8]. Let S :=[0,1] ® F.

THEOREM 2.2. There exists a universal constant C such that
P* (|| Znl|s > 2¢) < CP* (|| Zn(1,-)||7 > €) for every € > 0.

Proof. For s € [0,1] and f € F, we see that |Z,(s, )| < ||Zn(s,)||#.
Take the sup over & on both sides to obtain

(2.1) 1Znlls < 3P [1Zn(s, )7

In the right hand side of (2.1) the parameter s may be restricted to the
points k/n with k ranging over 1,2,...,n. Since Z,(s, f) = l"T‘?](P[ns] -
P)(f), we have

k
[|Zn]ls < 1211]3%”;“]% — P||#.

Ottaviani’s inequality in Lemma (2.1) gives

k
* Z||Py — 2
p (1?15’2%71” k= PllF> e)
< P*([|Pn — Pllr > ¢)

1 —maxj<g<n P* (,%HP;c — Pllr> e)'

The term maxi<g<n P* (%HPk — Pl > e) indexed by k& < ng can be
controlled with the help of the inequality

o
k|[Px— Pllz <2 F(X;)+2noP*F
i=1
for an envelope function F. For sufficiently large ng the term indexed
by k > ng are bounded away from 1 by the uniform weak law of large
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numbers for P,,. Conclude that the denominator is bounded away from
zero. The proof is completed. )

Let T* denote the measurable cover function for any mapping T :
Q—-R.

DEFINITION 2.3. A class F of measurable functions is a sequential
weak Glivenko-Cantelli if

[|Zn|ls — 0 in probability.
The class F is a weak Glivenko-Cantelli if
Zn(1,-)* — 0 in probability.

Sequential strong Glivenko-Cantelli class and strong Glivenko-Cantelli
class are defined in a similar fashion by using almost sure convergence.

COROLLARY 2.4. A class F is a sequential weak Glivenko-Cantelli if
and only if it is a weak Glivenko-Cantelli.

Proof. Observe that ||Z,(1,)||x < ||Zxlls. By Theorem 2.2, we get
P (12 (1, )7 > 2¢) < P*(||Znlls > 2¢) < CP" (||Zn(1, )|l > €) -
The proof is completed. a

COROLLARY 2.5. Let f be such that [ |f(z)|P(dz) < co. Then, sin-
gleton set {f} is a sequential weak Glivenko-Cantelli class.

Proof. For a singleton set {f}, since [ |f(z)|P(dz) < oo, we have by
weak law of large numbers

[1Zn(1,)llgsy = (Pn — P)(f) — 0 in probability.
Apply Corollary 2.4 to finish the proof. g

DEFINITION 2.6. A sequence of random variables {Y,} converges
completely to constant c if the series > o ; P(|Y, — ¢| > 1) converges.
A class F is a sequential complete Glivenko-Cantelli if

[|Zn]ls — 0 completely.
It is a complete Glivenko-Cantelli class if

||Zn(1,-)||7 — O completely.
REMARK 2.7. It is clear that if 3 > ; P(|Y, —c| > 1) converges then
Y o1 P(|Y — ¢| > €) converges for every € > 0. See Erdos [3].

We will use the following result on complete convergence in proving
the results on almost sure convergence.
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COROLLARY 2.8. A class of measurable functions is a sequential com-
plete Glivenko-Cantelli if and only if it is complete Glivenko-Cantelli.

Proof. Recall that
P*([12n(1,)ll7 > 2€) < P* (|| Znlls > 2¢) < CP*(||1Zn(1,)ll7 > €).

The proof is completed by taking the summation on each side. 4

3. A sequential strong Glivenko-Cantelli class

Let F C Lo(P) :={f : [ f%(z)P(dz) < 0o} be a class of real-valued
measurable functions defined on R. In this paper, we will use the £2
metric.

In order to measure the size of the function space, we define the
following version of metric entropy with bracketing. See, for example,
Van der Vaart and Wellner [8] and Van der Geer [7] for recent references.

DEFINITION 3.1. Given two functions ! and u, the bracket [l, u] is the
set of all functions f with I < f < u. An e-bracket is a bracket [I,u]
with [f(u—l)z(:c)P(dav)]l/2 < €. The bracketing number Nj(e) :=
N(y(e, F,d) is the minimum number of e-brackets needed to cover F.
We say that F has a bracketing entropy if [;°[In N (e, F, d)]/?de < 0.

Our goal is to find a condition on F that suffices to be a sequential

strong Glivenko-Cantelli class.
We are ready to state the following.

THEOREM 3.2. Suppose that F has a bracketing entropy. Then, it is

a sequential strong Glivenko-Cantelli class. That is,

[ns] *

sup |~ Z(f(Xl) — Pf)l — 0 almost surely.
S =t

We will use the following complete law of large numbers that appears
in Hsu and Robbins [4].

PROPOSITION 3.3. Suppose that [ f?(z)P(dx) < co. Then,

/ £(z)(Pn — P)(dz) — 0

completely. That is, the series

gjl P (][ se. - Piaw)

)
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converges.

REMARK 3.4. It is known that the assumption [ f%(z)P(dzx) < oo is
essential. See Theorem 2 and their conjecture in Hsu and Robbins [4].
See also Erdos [3] for the affirmative answer to the conjecture.

We are ready to perform the proof of Theorem 3.2. We find that the
idea of DeHardt [2] is still worked in getting Theorem 3.2.

Proof. In order to get the almost sure convergence, it suffices to show
the complete convergence. See Proposition 5.7 in [5]. In view of Corol-
lary 2.8, to obtain complete convergence of supg l% nyl]( f(X;) — Pf*
to zero, it is enough to prove supser ]% S (F(Xs) = Pf)* — 0 com-
pletely. Represent % 1(f(X;) — Pf) as an integral form [ f(z)(Pp—~
P)(dz). We name the integral process as Up(f). Fix € > 0. Choose
finitely many e-brackets [{;,u;] whose union contains F and such that
J(u; — 1;)%(z)P(dz) < €* for every i = 1,.. ., N[ (€). Then, for every
f € F, there is a bracket such that

Un() = [ £@Pu(ds) - [ 5(@)Pld)
- / £(2)Pn(dz) / ui(z) P(dz)
+ / us(z) P(dz) — / f(z)P(dz)

< / wi(z)(Pp — P)(dz) + / (ui — L)) P(dz).

Now, observe that

/(u2 — ;) (x)P(dz) < [/(uz - li)z(x)P(dx)] v <e.

Consequently,

U, < i(2)(Py, — P)(d .
sup n(f) < 1< B2 ui(z)(Py — P)(dx) + €
The right hand side converges completely to € by Proposition 3.3. Com-
bination with a similar argument for infscr U, (f) yields that
lim sup sup |Un(f)|* < ¢,
n—oo feF
completely, for every ¢ > 0. Take a sequence ¢, | 0 to see that the
limsup must actually be zero completely. The proof of Theorem 3.2 is
completed. O
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COROLLARY 3.5. Suppose that F has a bracketing entropy. Then, it
is a sequential complete Glivenko-Cantelli class. That is,

[ns) *

sgp - Z(f(Xi) — Pf){ — 0 completely.

i=1
Proof. This is not a corollary to Theorem 3.2 itself but a corollary to
the proof of Theorem 3.2. O

We are ready to finish the proof of Theorem 1.1.

Proof. The singleton set F = {f} certainly satisfies the bracketing
entropy condition. The result follows from Theorem 3.2. O

REMARK 3.6.

1. To the best of our knowledge, we cannot weaken the second mo-
ment assumption of [ f2(z)P(dz) < co. See Remark 3.4.

2. Convergence of supp<s<; ‘n‘l Zgzsll(f(Xz) - Pf)) to zero in prob-
ability is valid under the first moment assumption. See Corollary
2.5.

3. It is our opinion that considering G, in (1.2) without accompa-
nying D,, in (1.1) is not natural. When we consider G,, together
with D, the second moment condition is presumably given. See
Shreve [6].

4. Under a second moment condition, the weak laws can be obtained
as a result of central limit theorem by an application of Slutsky’s
theorem. However, strong laws have to be dealt with separately.
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