THE SEQUENTIAL UNIFORM LAW OF LARGE NUMBERS

Jongsig Bae and Sungyeun Kim

Abstract. Let $Z_n(s,f) = n^{-1} \sum_{i=1}^{\lfloor ns \rfloor} (f(X_i) - Pf)$ be the sequential empirical process based on the independent and identically distributed random variables. We prove that convergence problems of $\sup_{s,f} |Z_n(s,f)|$ to zero boil down to those of $\sup_f |Z_n(1,f)|$. We employ Ottaviani’s inequality and the complete convergence to establish, under bracketing entropy with the second moment, the almost sure convergence of $\sup_{s,f} |Z_n(s,f)|$ to zero.

1. Introduction and the main result

Let X_1, \ldots, X_n be independent and identically distributed random variables. Let $\{D_n\}$ be the sequential process defined by

$$D_n(s) = n^{-1/2} \sum_{i=1}^{\lfloor ns \rfloor} X_i \text{ for } 0 \leq s \leq 1,$$

where $\lfloor x \rfloor$ denotes the integral part of x. It is well known that, under the topic of Donsker’s invariance principle, the process D_n in (1.1) converges weakly to a Gaussian process. See, for example, Billingsley [1].

We have encountered the sequential process $\{G_n\}$ defined by

$$G_n(s) = n^{-1} \sum_{i=1}^{\lfloor ns \rfloor} X_i \text{ for } 0 \leq s \leq 1$$

in mathematical finance literatures. See Shreve [6].

The fact that $G_n(s)$ converges almost surely to sEX_1 for each fixed $s \in [0,1]$ is well known as a strong law of large numbers.

It is surprising that the following question is not yet settled down.

Received April 7, 2005.
2000 Mathematics Subject Classification: Primary 60F15; Secondary 62G20.
Key words and phrases: sequential Glivenko-Cantelli class, Ottaviani’s inequality, complete convergence, almost sure convergence, uniform law of large numbers.
QUESTION. What are the asymptotic behaviors of

$$\sup_{0 \leq s \leq 1} |G_n(s)|?$$

In this paper we provide a solution to the question by Ottaviani’s inequality and complete convergence.

We begin by formulating the above question.

Let \(\{X_i : i \geq 1\} \) be a sequence of independent and identically distributed random variables defined on a probability space \((\Omega, \mathcal{A}, P)\). Given a Borel measurable function \(f : \mathbb{R} \to \mathbb{R} \), we see that \(\{f(X_i) : i \geq 1\} \) forms a sequence of independent and identically distributed random variables that are more flexible in applications than \(\{X_i : i \geq 1\} \).

We state the following sequential strong law of large numbers.

Theorem 1.1. Suppose that \(\int f^2(x)P(dx) < \infty \). Then,

$$\sup_{0 \leq s \leq 1} \left| \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf) \right| \to 0 \text{ almost surely.}$$

The proof of Theorem 1.1 will be given at the end of the paper.

2. Sequential Glivenko-Cantelli classes

In addition to the setting in previous section, we consider a class \(\mathcal{F} \) of real-valued Borel measurable functions defined on \(\mathbb{R} \). Define a sequential empirical process \(Z_n \) by

$$Z_n(s, f) = \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - P f) \text{ for } (s, f) \in [0, 1] \otimes \mathcal{F}. $$

Define the empirical measure by

$$P_n(f) := \frac{1}{n} \sum_{i=1}^{n} f(X_i) \text{ for } f \in \mathcal{F}. $$

Observe that

$$Z_n(s, f) = \frac{[ns]}{n} (P_{[ns]} - P)(f)$$

and

$$Z_n(1, f) = (P_n - P)(f). $$

For a process \(\{Y_t\} \) indexed by an arbitrary set, we denote \(\|Y\| \) to mean \(\sup_t |Y_t| \). Let \(P^* \) denote the outer probability with respect to the underlying probability \(P \).
We need the following Ottaviani's inequality.

Lemma 2.1. Let \(X_1, \ldots, X_n \) be independent stochastic processes indexed by an arbitrary set. Let \(S_n := X_1 + \cdots + X_n \). Then for \(\lambda, \mu > 0 \),

\[
P^* \left(\max_{1 \leq k \leq n} ||S_k|| > \lambda + \mu \right) \leq \frac{P^* (||S_n|| > \lambda)}{1 - \max_{1 \leq k \leq n} P^* (||S_n - S_k|| > \mu)}.
\]

Proof. See Proposition A.1.1 in Van der Vaart and Wellner [8]. □

We obtain the following maximal inequality that illuminates the role of \(s \in [0, 1] \) is negligible in the problem of law of large numbers. Compare with the role of \(s \in [0, 1] \) in the problem of central limit theorem in section 2.12 in Van der Vaart and Wellner [8]. Let \(S := [0, 1] \otimes \mathcal{F} \).

Theorem 2.2. There exists a universal constant \(C \) such that

\[
P^* (||Z_n||_S > 2\epsilon) \leq CP^* (||Z_n(1, \cdot)||_F > \epsilon) \quad \text{for every } \epsilon > 0.
\]

Proof. For \(s \in [0, 1] \) and \(f \in \mathcal{F} \), we see that \(|Z_n(s, f)| \leq ||Z_n(s, \cdot)||_F \). Take the sup over \(S \) on both sides to obtain

\[
(2.1) \quad ||Z_n||_S \leq \sup_{0 \leq s \leq 1} ||Z_n(s, \cdot)||_F.
\]

In the right hand side of (2.1) the parameter \(s \) may be restricted to the points \(k/n \) with \(k \) ranging over \(1, 2, \ldots, n \). Since \(Z_n(s, f) = \frac{\lfloor ns \rfloor}{n} (P_{\lfloor ns \rfloor} - P)(f) \), we have

\[
||Z_n||_S \leq \max_{1 \leq k \leq n} \frac{k}{n} ||P_k - P||_F.
\]

Ottaviani's inequality in Lemma (2.1) gives

\[
P^* \left(\max_{1 \leq k \leq n} \frac{k}{n} ||P_k - P||_F > 2\epsilon \right) \leq \frac{P^*(||P_n - P||_F > \epsilon)}{1 - \max_{1 \leq k \leq n} P^*(||P_k - P||_F > \epsilon)}.
\]

The term \(\max_{1 \leq k \leq n} P^*(\frac{k}{n} ||P_k - P||_F > \epsilon) \) indexed by \(k \leq n_0 \) can be controlled with the help of the inequality

\[
k ||P_k - P||_F \leq 2 \sum_{i=1}^{n_0} F(X_i) + 2n_0 P^* F
\]

for an envelope function \(F \). For sufficiently large \(n_0 \) the term indexed by \(k > n_0 \) are bounded away from 1 by the uniform weak law of large
numbers for \(P_n \). Conclude that the denominator is bounded away from zero. The proof is completed.

Let \(T^* \) denote the measurable cover function for any mapping \(T : \Omega \to \mathbb{R} \).

Definition 2.3. A class \(F \) of measurable functions is a sequential weak Glivenko-Cantelli if

\[
\|Z_n\|_F^* \to 0 \text{ in probability.}
\]

The class \(F \) is a weak Glivenko-Cantelli if

\[
Z_n(1, \cdot)^* \to 0 \text{ in probability.}
\]

Sequential strong Glivenko-Cantelli class and strong Glivenko-Cantelli class are defined in a similar fashion by using almost sure convergence.

Corollary 2.4. A class \(F \) is a sequential weak Glivenko-Cantelli if and only if it is a weak Glivenko-Cantelli.

Proof. Observe that \(\|Z_n(1, \cdot)\|_F \leq \|Z_n\|_S \). By Theorem 2.2, we get

\[
P^*(\|Z_n(1, \cdot)\|_F > 2\epsilon) \leq P^*(\|Z_n\|_S > 2\epsilon) \leq CP^*(\|Z_n(1, \cdot)\|_F > \epsilon).
\]

The proof is completed.

Corollary 2.5. Let \(f \) be such that \(\int |f(x)|P(dx) < \infty \). Then, singleton set \(\{f\} \) is a sequential weak Glivenko-Cantelli class.

Proof. For a singleton set \(\{f\} \), since \(\int |f(x)|P(dx) < \infty \), we have by weak law of large numbers

\[
\|Z_n(1, \cdot)\|_{\{f\}} = (P_n - P)(f) \to 0 \text{ in probability.}
\]

Apply Corollary 2.4 to finish the proof.

Definition 2.6. A sequence of random variables \(\{Y_n\} \) converges completely to constant \(c \) if the series \(\sum_{n=1}^{\infty} P(|Y_n - c| > 1) \) converges. A class \(F \) is a sequential complete Glivenko-Cantelli if

\[
\|Z_n\|_S^* \to 0 \text{ completely.}
\]

It is a complete Glivenko-Cantelli class if

\[
\|Z_n(1, \cdot)\|_F^* \to 0 \text{ completely.}
\]

Remark 2.7. It is clear that if \(\sum_{n=1}^{\infty} P(|Y_n - c| > 1) \) converges then \(\sum_{n=1}^{\infty} P(|Y_n - c| > \epsilon) \) converges for every \(\epsilon > 0 \). See Erdos [3].

We will use the following result on complete convergence in proving the results on almost sure convergence.
Corollary 2.8. A class of measurable functions is a sequential complete Glivenko-Cantelli if and only if it is complete Glivenko-Cantelli.

Proof. Recall that
\[P^*(||Z_n(1, \cdot)||_F > 2\epsilon) \leq P^*(||Z_n||_S > 2\epsilon) \leq CP^* (||Z_n(1, \cdot)||_F > \epsilon). \]
The proof is completed by taking the summation on each side. \[\square\]

3. A sequential strong Glivenko-Cantelli class

Let \(F \subset L_2(P) := \{ f : \int f^2(x)P(dx) < \infty \} \) be a class of real-valued measurable functions defined on \(\mathbb{R} \). In this paper, we will use the \(L^2 \) metric.

In order to measure the size of the function space, we define the following version of metric entropy with bracketing. See, for example, Van der Vaart and Wellner [8] and Van der Geer [7] for recent references.

Definition 3.1. Given two functions \(l \) and \(u \), the bracket \([l, u]\) is the set of all functions \(f \) with \(l \leq f \leq u \). An \(\epsilon \)-bracket is a bracket \([l, u]\) with \(\left[\int (u - l)^2(x)P(dx) \right]^{1/2} < \epsilon \). The bracketing number \(N_{[1]}(\epsilon) := N_{[1]}(\epsilon, F, d) \) is the minimum number of \(\epsilon \)-brackets needed to cover \(F \).

We say that \(F \) has a bracketing entropy if \(\int_0^\infty [\ln N_{[1]}(\epsilon, F, d)]^{1/2} d\epsilon < \infty \).

Our goal is to find a condition on \(F \) that suffices to be a sequential strong Glivenko-Cantelli class.

We are ready to state the following.

Theorem 3.2. Suppose that \(F \) has a bracketing entropy. Then, it is a sequential strong Glivenko-Cantelli class. That is,
\[\sup_S \left\{ \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf) \right\}^* \rightarrow 0 \text{ almost surely.} \]

We will use the following complete law of large numbers that appears in Hsu and Robbins [4].

Proposition 3.3. Suppose that \(\int f^2(x)P(dx) < \infty \). Then,
\[\int f(x)(P_n - P)(dx) \rightarrow 0 \]
completely. That is, the series
\[\sum_{n=1}^\infty P \left(\left| \int f(x)(P_n - P)(dx) \right| > 1 \right) \]
converges.

Remark 3.4. It is known that the assumption \(\int f^2(x)P(dx) < \infty \) is essential. See Theorem 2 and their conjecture in Hsu and Robbins [4]. See also Erdos [3] for the affirmative answer to the conjecture.

We are ready to perform the proof of Theorem 3.2. We find that the idea of DeHardt [2] is still worked in getting Theorem 3.2.

Proof. In order to get the almost sure convergence, it suffices to show the complete convergence. See Proposition 5.7 in [5]. In view of Corollary 2.8, to obtain complete convergence of \(\sup_S |\frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf)|^* \) to zero, it is enough to prove \(\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Pf)|^* \to 0 \) completely. Represent \(\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Pf) \) as an integral form \(\int f(x)(P_n - P)(dx) \). We name the integral process as \(U_n(f) \). Fix \(\epsilon > 0 \). Choose finitely many \(\epsilon \)-brackets \([l_i, u_i]\) whose union contains \(\mathcal{F} \) and such that \(\int (u_i - l_i)^2(x)P(dx) < \epsilon^2 \) for every \(i = 1, \ldots, N_{[\cdot]}(\epsilon) \). Then, for every \(f \in \mathcal{F} \), there is a bracket such that

\[
U_n(f) = \int f(x)P_n(dx) - \int f(x)P(dx) = \int f(x)P_n(dx) - \int u_i(x)P(dx) + \int u_i(x)(P_n - P)(dx) \leq \int u_i(x)(P_n - P)(dx) + \int (u_i - l_i)(x)P(dx).
\]

Now, observe that

\[
\int (u_i - l_i)(x)P(dx) \leq \left[\int (u_i - l_i)^2(x)P(dx) \right]^{1/2} < \epsilon.
\]

Consequently,

\[
\sup_{f \in \mathcal{F}} U_n(f) \leq \max_{1 \leq i \leq N_{[\cdot]}(\epsilon)} \int u_i(x)(P_n - P)(dx) + \epsilon.
\]

The right hand side converges completely to \(\epsilon \) by Proposition 3.3. Combination with a similar argument for \(\inf_{f \in \mathcal{F}} U_n(f) \) yields that

\[
\lim \sup_{n \to \infty} \sup_{f \in \mathcal{F}} |U_n(f)|^* \leq \epsilon,
\]

completely, for every \(\epsilon > 0 \). Take a sequence \(\epsilon_m \downarrow 0 \) to see that the limsup must actually be zero completely. The proof of Theorem 3.2 is completed. \(\square \)
Corollary 3.5. Suppose that \mathcal{F} has a bracketing entropy. Then, it is a sequential complete Glivenko-Cantelli class. That is,

$$\sup_s \left| \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - P f) \right|_* \to 0 \text{ completely.}$$

Proof. This is not a corollary to Theorem 3.2 itself but a corollary to the proof of Theorem 3.2.

We are ready to finish the proof of Theorem 1.1.

Proof. The singleton set $\mathcal{F} = \{ f \}$ certainly satisfies the bracketing entropy condition. The result follows from Theorem 3.2.

Remark 3.6.

1. To the best of our knowledge, we cannot weaken the second moment assumption of $\int f^2(x) P(dx) < \infty$. See Remark 3.4.

2. Convergence of $\sup_{0 \leq s \leq 1} \left| n^{-1} \sum_{i=1}^{[ns]} (f(X_i) - P f) \right|$ to zero in probability is valid under the first moment assumption. See Corollary 2.5.

3. It is our opinion that considering G_n in (1.2) without accompanying D_n in (1.1) is not natural. When we consider G_n together with D_n, the second moment condition is presumably given. See Shreve [6].

4. Under a second moment condition, the weak laws can be obtained as a result of central limit theorem by an application of Slutsky's theorem. However, strong laws have to be dealt with separately.

References

DEPARTMENT OF MATHEMATICS AND INSTITUTE OF BASIC SCIENCE, SUNKYUN-KWAN UNIVERSITY, SUWON 440-746, KOREA

E-mail: jsbae@skku.edu
sykim@math.skku.ac.kr