THE SEQUENTIAL UNIFORM LAW OF LARGE NUMBERS

JONGSIG BAE AND SUNGYEUN KIM

ABSTRACT. Let $Z_n(s,f) = n^{-1} \sum_{i=1}^{\lfloor ns \rfloor} (f(X_i) - Pf)$ be the sequential empirical process based on the independent and identically distributed random variables. We prove that convergence problems of $\sup_{(s,f)} |Z_n(s,f)|$ to zero boil down to those of $\sup_f |Z_n(1,f)|$. We employ Ottaviani's inequality and the complete convergence to establish, under bracketing entropy with the second moment, the almost sure convergence of $\sup_{(s,f)} |Z_n(s,f)|$ to zero.

1. Introduction and the main result

Let X_1, \ldots, X_n be independent and identically distributed random variables. Let $\{D_n\}$ be the sequential process defined by

(1.1)
$$D_n(s) = n^{-1/2} \sum_{i=1}^{\lfloor ns \rfloor} X_i \text{ for } 0 \le s \le 1,$$

where [x] denotes the integral part of x. It is well known that, under the topic of Donsker's invariance principle, the process D_n in (1.1) converges weakly to a Gaussian process. See, for example, Billingsley [1].

We have encountered the sequential process $\{G_n\}$ defined by

(1.2)
$$G_n(s) = n^{-1} \sum_{i=1}^{[ns]} X_i \text{ for } 0 \le s \le 1$$

in mathematical finance literatures. See Shreve [6].

The fact that $G_n(s)$ converges almost surely to sEX_1 for each fixed $s \in [0,1]$ is well known as a strong law of large numbers.

It is surprising that the following question is not yet settled down.

Received April 7, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 60F15; Secondary 62G20.

Key words and phrases: sequential Glivenko-Cantelli class, Ottaviani's inequality, complete convergence, almost sure convergence, uniform law of large numbers.

QUESTION. What are the asymptotic behaviors of

$$\sup_{0 \le s \le 1} |G_n(s)|?$$

In this paper we provide a solution to the question by Ottaviani's inequality and complete convergence.

We begin by formulating the above question.

Let $\{X_i : i \geq 1\}$ be a sequence of independent and identically distributed random variables defined on a probability space (Ω, \mathcal{A}, P) . Given a Borel measurable function $f : \mathbb{R} \to \mathbb{R}$, we see that $\{f(X_i) : i \geq 1\}$ forms a sequence of independent and identically distributed random variables that are more flexible in applications than $\{X_i : i \geq 1\}$.

We state the following sequential strong law of large numbers.

THEOREM 1.1. Suppose that $\int f^2(x)P(dx) < \infty$. Then,

$$\sup_{0 \le s \le 1} \left| \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf) \right| \to 0 \quad \text{almost surely.}$$

The proof of Theorem 1.1 will be given at the end of the paper.

2. Sequential Glivenko-Cantelli classes

In addition to the setting in previous section, we consider a class \mathcal{F} of real-valued Borel measurable functions defined on \mathbb{R} . Define a sequential empirical process Z_n by

$$Z_n(s,f) = \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf) \text{ for } (s,f) \in [0,1] \otimes \mathcal{F}.$$

Define the empirical measure by

$$\mathbf{P}_n(f) := \frac{1}{n} \sum_{i=1}^n f(X_i) \text{ for } f \in \mathcal{F}.$$

Observe that

$$Z_n(s,f) = \frac{[ns]}{n} (\mathbf{P}_{[ns]} - P)(f)$$

and

$$Z_n(1,f) = (\mathbf{P}_n - P)(f).$$

For a process $\{Y_t\}$ indexed by an arbitrary set, we denote ||Y|| to mean $\sup_t |Y_t|$. Let P^* denote the outer probability with respect to the underlying probability P.

We need the following Ottaviani's inequality.

LEMMA 2.1. Let X_1, \ldots, X_n be independent stochastic processes indexed by an arbitrary set. Let $S_n := X_1 + \cdots + X_n$. Then for $\lambda, \mu > 0$,

$$P^* \left(\max_{1 \le k \le n} ||S_k|| > \lambda + \mu \right) \le \frac{P^* (||S_n|| > \lambda)}{1 - \max_{1 \le k \le n} P^* (||S_n - S_k|| > \mu)}.$$

Proof. See Proposition A.1.1 in Van der Vaart and Wellner [8].

We obtain the following maximal inequality that illuminates the role of $s \in [0,1]$ is negligible in the problem of law of large numbers. Compare with the role of $s \in [0,1]$ in the problem of central limit theorem in section 2.12 in Van der Vaart and Wellner [8]. Let $S := [0,1] \otimes \mathcal{F}$.

THEOREM 2.2. There exists a universal constant C such that

$$P^*(||Z_n||_{\mathcal{S}} > 2\epsilon) \leq CP^*(||Z_n(1,\cdot)||_{\mathcal{F}} > \epsilon)$$
 for every $\epsilon > 0$.

Proof. For $s \in [0,1]$ and $f \in \mathcal{F}$, we see that $|Z_n(s,f)| \leq ||Z_n(s,\cdot)||_{\mathcal{F}}$. Take the sup over \mathcal{S} on both sides to obtain

$$(2.1) ||Z_n||_{\mathcal{S}} \leq \sup_{0 \leq s \leq 1} ||Z_n(s, \cdot)||_{\mathcal{F}}.$$

In the right hand side of (2.1) the parameter s may be restricted to the points k/n with k ranging over 1, 2, ..., n. Since $Z_n(s, f) = \frac{[ns]}{n} (\mathbf{P}_{[ns]} - P)(f)$, we have

$$||Z_n||_{\mathcal{S}} \leq \max_{1 \leq k \leq n} \frac{k}{n} ||\mathbf{P}_k - P||_{\mathcal{F}}.$$

Ottaviani's inequality in Lemma (2.1) gives

$$P^* \left(\max_{1 \le k \le n} \frac{k}{n} ||\mathbf{P}_k - P||_{\mathcal{F}} > 2\epsilon \right)$$

$$\le \frac{P^* (||\mathbf{P}_n - P||_{\mathcal{F}} > \epsilon)}{1 - \max_{1 \le k \le n} P^* \left(\frac{k}{n} ||\mathbf{P}_k - P||_{\mathcal{F}} > \epsilon \right)}.$$

The term $\max_{1 \le k \le n} P^* \left(\frac{k}{n} || \mathbf{P}_k - P ||_{\mathcal{F}} > \epsilon \right)$ indexed by $k \le n_0$ can be controlled with the help of the inequality

$$|k||\mathbf{P}_k - P||_{\mathcal{F}} \le 2\sum_{i=1}^{n_0} F(X_i) + 2n_0 P^* F$$

for an envelope function F. For sufficiently large n_0 the term indexed by $k > n_0$ are bounded away from 1 by the uniform weak law of large

numbers for \mathbf{P}_n . Conclude that the denominator is bounded away from zero. The proof is completed.

Let T^* denote the measurable cover function for any mapping $T:\Omega\to\mathbb{R}.$

Definition 2.3. A class \mathcal{F} of measurable functions is a sequential weak Glivenko-Cantelli if

$$||Z_n||_{\mathcal{S}}^* \to 0$$
 in probability.

The class \mathcal{F} is a weak Glivenko-Cantelli if

$$Z_n(1,\cdot)^* \to 0$$
 in probability.

Sequential strong Glivenko-Cantelli class and strong Glivenko-Cantelli class are defined in a similar fashion by using almost sure convergence.

COROLLARY 2.4. A class \mathcal{F} is a sequential weak Glivenko-Cantelli if and only if it is a weak Glivenko-Cantelli.

Proof. Observe that $||Z_n(1,\cdot)||_{\mathcal{F}} \leq ||Z_n||_{\mathcal{S}}$. By Theorem 2.2, we get $P^*(||Z_n(1,\cdot)||_{\mathcal{F}} > 2\epsilon) \leq P^*(||Z_n||_{\mathcal{S}} > 2\epsilon) \leq CP^*(||Z_n(1,\cdot)||_{\mathcal{F}} > \epsilon)$. The proof is completed.

COROLLARY 2.5. Let f be such that $\int |f(x)|P(dx) < \infty$. Then, singleton set $\{f\}$ is a sequential weak Glivenko-Cantelli class.

Proof. For a singleton set $\{f\}$, since $\int |f(x)|P(dx) < \infty$, we have by weak law of large numbers

$$||Z_n(1,\cdot)||_{\{f\}} = (\mathbf{P}_n - P)(f) \to 0$$
 in probability.

Apply Corollary 2.4 to finish the proof.

Definition 2.6. A sequence of random variables $\{Y_n\}$ converges completely to constant c if the series $\sum_{n=1}^{\infty} P(|Y_n - c| > 1)$ converges. A class \mathcal{F} is a sequential complete Glivenko-Cantelli if

$$||Z_n||_{\mathcal{S}}^* \to 0$$
 completely.

It is a complete Glivenko-Cantelli class if

$$||Z_n(1,\cdot)||_{\mathcal{F}}^* \to 0$$
 completely.

REMARK 2.7. It is clear that if $\sum_{n=1}^{\infty} P(|Y_n - c| > 1)$ converges then $\sum_{n=1}^{\infty} P(|Y_n - c| > \epsilon)$ converges for every $\epsilon > 0$. See Erdos [3].

We will use the following result on complete convergence in proving the results on almost sure convergence. COROLLARY 2.8. A class of measurable functions is a sequential complete Glivenko-Cantelli if and only if it is complete Glivenko-Cantelli.

Proof. Recall that

$$P^*(||Z_n(1,\cdot)||_{\mathcal{F}} > 2\epsilon) \le P^*(||Z_n||_{\mathcal{S}} > 2\epsilon) \le CP^*(||Z_n(1,\cdot)||_{\mathcal{F}} > \epsilon)$$
. The proof is completed by taking the summation on each side.

3. A sequential strong Glivenko-Cantelli class

Let $\mathcal{F} \subset \mathcal{L}_2(P) := \{f : \int f^2(x)P(dx) < \infty\}$ be a class of real-valued measurable functions defined on \mathbb{R} . In this paper, we will use the \mathcal{L}^2 metric.

In order to measure the size of the function space, we define the following version of metric entropy with bracketing. See, for example, Van der Vaart and Wellner [8] and Van der Geer [7] for recent references.

DEFINITION 3.1. Given two functions l and u, the bracket [l,u] is the set of all functions f with $l \leq f \leq u$. An ϵ -bracket is a bracket [l,u] with $\left[\int (u-l)^2(x)P(dx)\right]^{1/2} < \epsilon$. The bracketing number $N_{[\]}(\epsilon) := N_{[\]}(\epsilon,\mathcal{F},d)$ is the minimum number of ϵ -brackets needed to cover \mathcal{F} . We say that \mathcal{F} has a bracketing entropy if $\int_0^\infty [\ln N_{[\]}(\epsilon,\mathcal{F},d)]^{1/2}d\epsilon < \infty$.

Our goal is to find a condition on \mathcal{F} that suffices to be a sequential strong Glivenko-Cantelli class.

We are ready to state the following.

THEOREM 3.2. Suppose that \mathcal{F} has a bracketing entropy. Then, it is a sequential strong Glivenko-Cantelli class. That is,

$$\sup_{\mathcal{S}} \left| \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf) \right|^* \to 0 \text{ almost surely.}$$

We will use the following complete law of large numbers that appears in Hsu and Robbins [4].

Proposition 3.3. Suppose that $\int f^2(x)P(dx) < \infty$. Then,

$$\int f(x)(\mathbf{P}_n - P)(dx) \to 0$$

completely. That is, the series

$$\sum_{n=1}^{\infty} P\left(\left| \int f(x) (\mathbf{P}_n - P) (dx) \right| > 1 \right)$$

converges.

REMARK 3.4. It is known that the assumption $\int f^2(x)P(dx) < \infty$ is essential. See Theorem 2 and their conjecture in Hsu and Robbins [4]. See also Erdos [3] for the affirmative answer to the conjecture.

We are ready to perform the proof of Theorem 3.2. We find that the idea of DeHardt [2] is still worked in getting Theorem 3.2.

Proof. In order to get the almost sure convergence, it suffices to show the complete convergence. See Proposition 5.7 in [5]. In view of Corollary 2.8, to obtain complete convergence of $\sup_{\mathcal{S}} |\frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf)|^*$ to zero, it is enough to prove $\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n (f(X_i) - Pf)|^* \to 0$ completely. Represent $\frac{1}{n} \sum_{i=1}^n (f(X_i) - Pf)$ as an integral form $\int f(x)(\mathbf{P}_n - P)(dx)$. We name the integral process as $U_n(f)$. Fix $\epsilon > 0$. Choose finitely many ϵ -brackets $[l_i, u_i]$ whose union contains \mathcal{F} and such that $\int (u_i - l_i)^2(x)P(dx) < \epsilon^2$ for every $i = 1, \ldots, N_{[\cdot]}(\epsilon)$. Then, for every $f \in \mathcal{F}$, there is a bracket such that

$$\begin{split} U_n(f) &= \int f(x) \mathbf{P}_n(dx) - \int f(x) P(dx) \\ &= \int f(x) \mathbf{P}_n(dx) - \int u_i(x) P(dx) \\ &+ \int u_i(x) P(dx) - \int f(x) P(dx) \\ &\leq \int u_i(x) (\mathbf{P}_n - P)(dx) + \int (u_i - l_i)(x) P(dx). \end{split}$$

Now, observe that

$$\int (u_i - l_i)(x)P(dx) \le \left[\int (u_i - l_i)^2(x)P(dx)\right]^{1/2} < \epsilon.$$

Consequently,

$$\sup_{f \in \mathcal{F}} U_n(f) \le \max_{1 \le i \le N_{[\cdot]}(\epsilon)} \int u_i(x) (\mathbf{P}_n - P)(dx) + \epsilon.$$

The right hand side converges completely to ϵ by Proposition 3.3. Combination with a similar argument for $\inf_{f \in \mathcal{F}} U_n(f)$ yields that

$$\limsup_{n\to\infty} \sup_{f\in\mathcal{F}} |U_n(f)|^* \le \epsilon,$$

completely, for every $\epsilon > 0$. Take a sequence $\epsilon_m \downarrow 0$ to see that the limsup must actually be zero completely. The proof of Theorem 3.2 is completed.

COROLLARY 3.5. Suppose that \mathcal{F} has a bracketing entropy. Then, it is a sequential complete Glivenko-Cantelli class. That is,

$$\sup_{\mathcal{S}} \left| \frac{1}{n} \sum_{i=1}^{[ns]} (f(X_i) - Pf) \right|^* \to 0 \quad completely.$$

Proof. This is not a corollary to Theorem 3.2 itself but a corollary to the proof of Theorem 3.2. \Box

We are ready to finish the proof of Theorem 1.1.

Proof. The singleton set $\mathcal{F} = \{f\}$ certainly satisfies the bracketing entropy condition. The result follows from Theorem 3.2.

Remark 3.6.

- 1. To the best of our knowledge, we cannot weaken the second moment assumption of $\int f^2(x)P(dx) < \infty$. See Remark 3.4.
- 2. Convergence of $\sup_{0 \le s \le 1} \left| n^{-1} \sum_{i=1}^{[ns]} (f(X_i) Pf) \right|$ to zero in probability is valid under the first moment assumption. See Corollary 2.5.
- 3. It is our opinion that considering G_n in (1.2) without accompanying D_n in (1.1) is not natural. When we consider G_n together with D_n , the second moment condition is presumably given. See Shreve [6].
- 4. Under a second moment condition, the weak laws can be obtained as a result of central limit theorem by an application of Slutsky's theorem. However, strong laws have to be dealt with separately.

References

- [1] P. Billingsley, Convergence of probability measure, John Wiely & Sons, New York, 1968.
- [2] J. DeHardt, Generalizations of the Glivenko-Cantelli theorem, Ann. Math. Statist. **42** (1971), 2050–2055.
- [3] P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286–291.
- [4] P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25–31.
- [5] A. F. Karr, Probability, Springer Texts in Statistics, Springer-Verlag, New York, 1993.
- [6] S. Shreve, Stochastic calculus and finance, Springer Finance, Springer-Verlag, New York, 2004.

- [7] S. van de Geer, *Empirical processes in M-estimation*, Cambridge in Statististical and Probabilistic Mathematics (Cambridge University Press, Cambridge, United Kingdom, 2000.
- [8] A. W. van der Vaart and J. A. Wellner, Weak convergence and empirical processes with applications to statistics, Springer series in Statistics, Springer-Verlag, New York, 1996.

Department of Mathematics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea

 $E\text{-}mail\colon$ jsbae@skku.edu

sykim@math.skku.ac.kr