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ALGEBRAS WITH A NILPOTENT
GENERATOR OVER Zp,

Sung SiIKk Woo

ABSTRACT. The purpose of this paper is to describe the structure
of the rings Z,2[X]/(@(X)) with a(X) a monic polynomial and
X% = 0 for some nonnegative integer k. Especially we will see that
any ideal of such rings can be generated by at most two elements
of the special form and we will find the ‘minimal’ set of generators
of the ideals. We indicate how to identify the isomorphism types of
the ideals as Zy2 -modules by finding the isomorphism types of the
ideals of some particular ring. Also we will find the annihilators of
the ideals by finding the most ‘economical’ way of annihilating the
generators of the ideal.

1. Introduction

The motivation of this paper is to look at the cyclic codes of length
2™ over Z4. A cyclic code of length 2™ over Z, can be identified with
an ideal of Z4[X]/(X?" —1). Now Z4[X]/(X2?" — 1) turns out to be
isomorphic to the ring Z4[X]/(X?2" — 2X2""") which is one of the type
in the title [3]. Descriptions of the ideals of Zy»[X]/(X™ — 1) when p
is relatively prime to m is given in [2]. But nothing seems to be known
for the case when p divides m.

In [3], it was shown that the generators of the ideals and their anni-
hilators is described for the ring Z4[X]/(X?" — 2X2"7"). In this paper,
we generalize the results to the case of a prime p. Namely we will de-
scribe the minimal generators for the ideals of S = Z,2[X]/(a(X)) with
a monic polynomial a(X) in which X™ = 0 for some nonnegative integer
n.

To find the description of the ideals of such algebra S, we endow an
order structure on S. As for the case of a polynomial ring over a field,
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to find the generator of an ideal, we find the minimal elements of some
special forms with respect to the order structure of S. We show the ideal
is generated by those minimal elements. For this we prove something
similar to Euclidean algorithm over Z,: which is a key to find the ideals
of S (82, §3).

We identify the isomorphism types of the ideals of some specially cho-
sen ring in §4 which indicate the way how to find the isomorphism types
for other cases. To find the annihilators of an ideal we find polynomials
which annihilates the generators of the ideals of S in most economical
way (85).

Most of the results of §2, §3 are straight forward generalizations of
the results in (3], where the prime p is supposed to be even.

2. Algebras over Z,: generated by a nilpotent element

We consider a ring of the form S = Z,2[X]/(a(X)), where a(X) is a
monic polynomial of degree m such that X™ € (a(X)) for some n, i.e.,
S = Zyz2[z] with 2" = 0 for some n and satisfies a monic polynomial.
If I is the smallest integer then we will say that the nilpotency of z is
. We will call such ring as finite cyclic Z,2-algebra with a nilpotent
generator of nilpotency . Typical examples we have in mind are § =
Zp2(X]/(X™ — pX") with nonnegative integers m > n.

Throughout this paper a ring S will mean a cyclic Zy2- algebra of
the form S = Z,:[X]/(a(X)), where a(X) is a monic polynomial of
degree m such that X™ € (a(X)) for some n. Whenever we talk about a
polynomial f(X)in S = Zp2[X]/(c(X)) we shall choose a representative
with degree less than m. In this section we fix the degree of a(X), say
deg(a(X)) = m.

Our first observation is that the ring we are interested in is a local
ring and every ideal of S is primary. See [1] for the definition of primary
ideals and the radical of an ideal.

PROPOSITION 1. The ring S = Z,2[X]/(a(X)) is a local ring with
the maximal ideal (p, X). Every ideal J of S is primary with the radical
rad(J) = (p, X).

Proof. Let m be a maximal ideal. Any nilpotent element is contained
in every prime ideal [1]. Since p is also nilpotent, we see p and X belong
to m. On the other hand, (p, X) is a maximal ideal since S/(p, X) = Fp,
the field with p elements. Therefore m = (p, X).
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Let J be an ideal of S. Then p and X, being nilpotent, belong to the
radical rad(J) of J. Therefore rad(J) = (p, X). It is well known that

if the radical of J is a maximal ideal, then J is primary [1, Proposition
4.2). 0

We will use the following well known fact freely.

LEMMA 1. Let R be a commutative ring with the identity. If u be a
unit and v € R is nilpotent, then v + v is a unit.

We define an ordering on the set of representatives {0,1,2,... ,p? — 1}
of Zy2 in the usual way

0<l<2<---<p?—1,

where we omit the bars as we will do from now on. On the set C =
{(ao,a1,... ,am-1)|a; € Zy2}, we define an ordering by endowing the
lexicographic order.

m ) m—1 .
Let f(X) = Y a; X" g(X) = > b; X" be polynomials in Z,2[X]
=0 =0

with deg(f),deg(g) < m. Then we define
f < g if and Only if (a07a17 s 7a"m—1) < (b())bla v ,bm—l)'

If an ideal of S = Z,2[X]/(a(X)) is contained in a principal ideal (p)
generated by p, then J is also a principal ideal as we see in the following
proposition.

PROPOSITION 2. Let J be an ideal of S contained in (p). Then J is
of the form (pX") for some r.
m—1 .
Proof. Let f(X)= Y a;X* € J. Since J C (p), all of the coefficients
i=0
of f are in pZ,2. By noting that X is nilpotent, we see that f(X) is
of the form pXJ-(unit). Now let pX” be the lowest degree among such
expressions of the elements of J. Now it is obvious that J = (pX7). O

DEFINITION. Let us call the element of the form p X" a pxr form.

3. Euclidean algorithm modulo p? and the ideals of nilpotent
algebra

If the ideal J is not contained in the ideal (p) generated by p € S, we
will then prove existence of elements of some special form.
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PROPOSITION 3. Let S be as before. Let J be a nonzero ideal of S
which is not contained in the ideal (p). Then there are nonzero elements
of the form X* + ph(X), where h € S of degree < k.

Proof. If f(X) = 3 a; X" is a nonzero polynomial in J with a unit
i<m
ag, then f is a unit since X € S is nilpotent, i.e., J is the unit ideal.
Hence we may assume the constant term of every f € J is 0 or p. If
the coefficient of the lowest degree term of every nonzero f € J is a unit,
then they are of the form X° x (unit). Therefore X* is an element of J
which is of the required form. Now suppose there is f = > a;X* € J

<m
with the coeflicient of the lowest degree is p. Let a; be the unit coefficient
of the lowest degree, i.e., a;_1,a;_2,... are in pZ,>. Let [ be the smallest

integer such that X' = 0. Then X'~*~1f(X) is a desired form. O
DEFINITION. The polynomials of the form
9(X) = X* + par X" + pan_1 X" + -+ + pag

with ap,ap—1,...,a0 € Z,2 will be called an xkp form. And we will often
denote the polynomial pap X" + pap_1 X"~ +--- + pag by p- h(X).

Let us agree that the degree of the zero polynomial is —co and X* = 0
if £k = —o0.

THEOREM 1(EUCLIDEAN ALGORITHM MODULO p?). Let J be an
ideal of S which is not contained in the ideal (p) generated by p € S.
Let g(X) = X* + ph(X) € J be an xkp form which is minimal with
respect to the ordering defined above. Let f(X) = Y. a;X* € J. Then

i<m
we can write uniquely

F(X) = g(X)q(X) + r(X)

with ¢(X),r(X) € S, deg(r) < k and r(X) € pZ,2[X].

Proof. Since g is monic, we can write f = gq + r for some r € §
with deg(r) < deg(g) = k uniquely by Euclidean algorithm over a com-
mutative ring. We need to prove that the coefficients of r(X) are in
D2

Assume that this is not true. If the coefficient of the lowest degree
term is a unit, then 7(X) is of the form X*-(unit) with ¢ < k since X
is nilpotent. Hence X* € J with i < k. But this contradicts to the fact
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that g(X) = X* + ph(X) is a minimal element. Hence we may assume
that the coefficient of the lowest degree term is p.

Let r(X) = a; X7 +a;_1 X7  +. .. +pX' with j < k and a; # 0. Let
asX° be the lowest degree term with a unit as, that is, as_1,a5_2,... €
pZLy2. If s = j, then r(X) is a xkp form which is smaller than g(X)
which contradicts to the minimality of g(X). Hence j > s.

Then we see that X*=9r(X)—a;g(X) € J is a polynomial of degree <
k in which the divisibility of the coefficients of X $tk—7i—1 Xs+k—i-2
by p remain the same as those of az_1,as_2,... since the coefficient of
terms of degree < k in a;g(X) is in pZe.

Let ph(X)=>_ph;X*. If the coefficients of X*~1 Xk=2  Xst+k—i+l

(2

in X*79r(X) —a;9(X) happen to vanish namely X*~9r(X) —a,g(X) =
(as +pajhs) X577 + (a1 + pajhs_1) X T*=I71 4. + (p+ pajhy) X'
Then as + pajhs is a unit and as_; + pajhs—; € pZy2 for i > 1. But this
gives us an element in J which is smaller than g(X) after multiplying
some unit if necessary. This is a contradiction.

If this is not the case, then we can repeat the same process until all
the coefficients of the terms but the last (s — {) terms vanish without
changing the divisibility by p of the coefficients of the last (s — ) terms
to get an element of J with degree < deg(X*~7r(X) — a;g(X)). Then,
the resulting element is obviously an xkp form which is smaller than
g(X) belonging to J. O

Let J be a nonzero ideal of S which is not contained in (p). Choose an
element of the form g(X) = X* +ph(X) with h(X) € S with deg(h) < k
which is the smallest one with respect to the ordering defined above. We
will show that J is generated by g(X) and pX" for some 7.

THEOREM 2. Let J be an ideal of S which is not contained in (p).
Let g(X) = X* + ph(X) € J be the smallest xkp form in J and pX" be
the smallest pxr form in J. Then J = (g(X),pX"), where —oco < r < I.

Proof. Obviously J D (g9(X),pX"). Now let f € J and write f(X) =

9(X)q(X)+pr(X). Then pr(X) is of the form pr(X) = pX*t(v+ Y a; X?)
i>1

for some unit v € Zy2. Since X is nilpotent, pr(X) = pX* - u for some
unit u. Hence we can write f(X) = ¢g(X)q(X) + pX? - u for some
unit w. Since f(X) and g(X) belong to J, we see that pXt € J. As
pX" is the smallest pxr form in J, we have t > r. Therefore f(X) =
9(X)q(X) + uXt""(pX"). Thus J C (g(X),pX"). a
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COROLLARY. The proper ideals of S are of the form (pX*) for some
i; or are of the form (g(X),pX") for some xkp form g(X) and some r
with —oo < r < deg(g).

Now we count the number of possible distinet ideals of S.

PROPOSITION 4. The principal ideals of S are of the following forms:
(i) (pX") for some pxr form pX" with (0 < r < m);

(ii) (g(X)) for some xkp form g(X).

The number of ideals of the first type is m; the number of ideals of

m

1
the second type does not exceed kzl pF = ppT_lE.
Proof. May be the last statement worth checking. For each degree
k of g(X) we can choose the coefficients of X*~1 ... X,1 in the set of
multiples pZ,2 of p, namely {p,2p,...,p(p — 1),p? = 0} and thus the
number of all possible xkp forms are p* for each fixed k of degree g(X).
Hence the number of ideals generated by an xkp form does not exceed

mo__
p+p2++pm_1=u
p—1

O

PROPOSITION 5. The set of nonprincipal ideals of S are of the form
(9(X),pXT), where g(X) = X* +pap X" +-- -+ pag is an xkp form with
k < r < h. Then the number of nonprincipal ideals does not exceed

> (k—h-1p"(p-1).

0<h<k<m

Proof. For each k, choose the highest degree of nonzero term h. Once
we choose k and h, then there are k — h — 1 possible choices of pxr form
2X" (k < r < h). For each choice of k and h, we can choose the
coefficient of X" from {p,p+1,... ,p(p— 1)} since it has to be nonzero
and then we can choose the coefficients of X*~1,... X, 1 from D2
Hence there are p"(p — 1)(k — h — 1) of them. Therefore the number of

all possible nonprincipal idealsis Y., (k—h—1)p*(p—1). O
0<h<k<m

REMARK. Not all distinct expressions of (g(X),pX") give distinct
ideals. For example, if we take S = Z4[X]/(X* — 2X?), then one can
easily check that (X3 +2X?) = (X3,2X?). The smallest element of the
ideal (g(X),2X7).
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p2
4. Isomorphism types of ideals

Since we are considering a finite ring S = Zp2[X]/(a(X)), it is iso-
morphic as abelian groups to m-copies of Zy2, where m = dega(X).
Therefore an ideal of S is isomorphic to sum of copies of Z,2’s and Zy’s.
In this section, we want to find the number of copies of Z,2 and Zj, of an
ideal of S. Thereby we can identify the isomorphism types of the ideals
as Zy2-modules.

It would be too complicate to consider the general monic polynomial
a(X). Therefore, in this section we specialize our ring and we let a(X) =
X™ — pX™ with nonnegative integers n < m thereby indicating the
method for general a(X). For f(X) € S with deg(f(X)) < m, let us
write deg; (f(X)) for the degree of the lowest nonzero degree term.

Let g(X) = X*+pap X" +pap_1 X1+ -+pag with ap, ap—1, ... ;a0
€ Z,2. For each basis element {1,X,...,X™ '} (in this order) of S
express X’g(X) as a linear combination of the basis {X™!,... , X,1}
(in this order) of S. Then its matrix expression is of the form

A B
o=(c 5):

where A is a (m — k) x (m — k) matrix of the form

_= o OO

L S

*

with 1’s on the opposite diagonal and *’s below the opposite diagonals
which consist of the elements of pZ,2. The matrix B is of size (m—k) xk
over pZ,2 and C is a (m — k) x (m — k) matrix over pZp:.

And D is a k x k matrix of the form

* * pa O 0

pa 0........ 0

* L 0
D=|pa 0 0 .ol 01,

0 O 0. i 0
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where *’s are in pZ,> with a unit a. Hence the upper left corner of D is
a square matrix whose opposite diagonals are multiples of p.

The moral is that adding a constant multiple of a row to another one
does not change the submodule generated by the rows.

We consider two cases. The first case is when D = 0. This is equiv-
alent to deg; (X™ *g(X)) > k. The second case we consider is when
D # 0. This is equivalent to that deg; (X™ *g(X)) < k.

THEOREM 3. Let S = Z,2[X]/(X™ — pX™) and let
9(X) = X* + pan X" + pap_1 X" + - + pag

with ap,ar-1,... ,a0 € Zy2. Then the ideal I generated by g(X) is
isomorphic, as Zy2-modules, to the following one:

(i) if degy (X™ *g(X)) > k, then I is Z,2-free of rank (m ~ k);
(ii) ifl := deg;(X™ *g(X)) < k, then I is isomorphic to the sum
of (m — k) copies of Z,2 and (k — ) copies of Z,,.

Proof. First, consider the case when D = 0, i.e., deg X™ *g(X) > k.
And in this case, the number of 1's is m — k. And, using these 1’s, we
can get rid of p’s in C. Hence the ideal generated by g(X) is free over
Zp2 of rank m — k.

Now let I = deg; X™ *g(X) < k. As before, we can make all entries
below the 1’s on the opposite diagonal of A. Also we can get rid of
multiples p’s in C without changing D since the entries in B and C are
the multiples of p. We can get rid of all entries above the pa on the
opposite diagonal of a square matrix on the upper left corner of D. It
is clear that the ideal generated by the rows is isomorphic to the sum of
(m — k) copies of Z,2 which correspond to the 1’s in A and [ — k copies
of Z,, which correspond to pa’s in D. |

COROLLARY. Let § = Z,2[X]/(X™ —pX™). Then the ideal (g(X))
is Zy2-free if and only if deg, (X™*g(X)) > k.

Proof. We know that the ideal (g(X)) is Z,2-free if there is no p-part
when deg; (X™ *g(X)) > k. O

For simplicity, we will use the notation

[a,b] = max{a,b} and |a,b] = min{a,b}
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PROPOSITION 6. Let S = Z,2[X]/(X™—pX™). Then the ideal (pX")
generated by pX" is isomorphic to (m — r) copies of Z,.

Proof. 1t is easy to show and we omit its proof. O
THEOREM 4. Let S = Z,2[X]/(X™ — pX™) and let
9(X) = X5 4 papX? + pan_1 X"t + -+ pag

with ap,ap—1,... 60 € Zy2. Then the ideal I generated by g(X) and
pX" is isomorphic, as Z,2-modules, to the following one:
(i) ifdeg; (X™ *g(X)) > k, then I is isomorphic to (m — k) copies
of Zy: and [k —r,0] copies of Zy; or
(ii) if | := deg;(X™ *g(X)) < k, then I is isomorphic to (m — k)
copies of Zy2 and k— |r,l| copies of Z,, where [a,b] = max{a, b}
and |a,b| = min{a, b}.

Proof. The generator matrix for (g(X),pX") is

A B
G=|C D],
F

where F' is a matrix of the same form as D of size (m — r) x m. Now
it is easy to check that the ideal is isomorphic to the abelian groups in
the theorem and we omit the detail. O

5. Annihilating polynomials of the ideals
Recall [1] the annihilator Ann(I) of an ideal I of a ring R is given by
Anmn(I)={reR|rz=0forallz € I}

We will find polynomials which annihilates the polynomial g(X) in the
‘most economical’ way which will be the generators for the annihilator
of the ideal. As in §4, we let S = Z,2[X]/(X™ — pX™), throughout this
section.

PROPOSITION 7. Let S = Z,2[X]/(X™—pX™). Then the annihilator
of the ideal (pX™) is given by (X™™",p).
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Proof. By Theorem 2, we need to find the smallest xkp form and
pxr form which annihilate pX". Now we have X™ "(pX") = pX™ =0
and p(pX"™) = 0. It is clear that X™~" is a minimal xkp form which
annihilates g(X) and p is the smallest pxr form which annihilates pX".0

THEOREM 5. Let S = Z,2[X]/(X™ — pX™) and let
9(X) = X* + pan X" + pan_1 X" + -+ + pag

with ap,an_1,... ,a9 € Zy2. Then the annihilator of the ideal (g(X)) is
given by the following:

(i) if degy (X™ *g(X)) > k, then Ann(g(X)) is generated by

gJ_ (X) = xXm—k _ ZpaiXi+m—2lc +an—k;
i<h

(i) if I := deg (X™ *g(X)) < k and let X" *g(X) = pb, X* +
++++pb X', then the annihilator of the ideal (g(X)) generated by
g+ (X) and pX™~* where g+ (X) := X™ ! —pb X'~ —... _pb,.

Proof. (i) We need to find the smallest xkp form X¢ + ph/(X) such
that X*g(X) = ph/(X)g(X). Hence we need to find the smallest a such
that X%g(X) € pZ,2[X] and deg, (X®g(X) > k. Obviously a = m—k is
the smallest such that X°g(X) € pZ,2[X]. And since deg; (X™ *g(X))
> k, we see that

Xm——kg(X) - ZpaiXi+m—k: —pX"
i>h

— pg(X)Zaz'XHm—% _ pg(X)X"_k.
i>h
Therefore we see that g+ (X) 1= X™F - S pa, X+m—2k L p X"~k ig the
i<h

smallest xkp form that annihilates g(X).

The smallest pxr form that annihilates g(X) is pX™* but it already
belongs to the ideal (g1 (X)). Therefore Ann(g(X)) = (g*(X)).

(i) Now suppose ! := deg; (X™ *g(X)) < k. As before, we need to
find the smallest a such that X?g(X) € pZ,2[X]. Let X™ kg(X) =
pbs Xt 4 - + ph X', Then

Xm—lg(X) — pthH—k:—-l N plek
= g(X)(Pb: X"t + -+ + phy).
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Obviously a = m—1 is the smallest integer such that X*g(X) € pZpz[X]
and
g (XM —pb X* = —pby) = 0.

Therefore g+ (X) := X™ ! —pby X*~! —... —pb; is the smallest xkp form
which annihilates g(X).

It is clear that pX™ *g(X) = 0 and pX™* is the smallest pxr form
which annihilates g(X). Therefore Ann(g(X)) = (g+(X), X™%) a

Now, we look at the annihilator of the ideals generated by two ele-
ments.

THEOREM 6. Let R = Z,2[X]/(X™ —pX™) and let
9(X) = X* + pan X" + pap_1 X" + -+ pag

with ap,an-1,...,80 € Zy2. Then the annihilator of the ideal I :=
(9(X),pX") is given by the following:
(1) if deg, (X™ *g(X)) > k), then Annl is generated by pX™*
and X %=1 gL(X), where g*(X) is given in Theorem 5 (i);
(ii) ifl := deg; (X™ *g(X)) < k), then AnnlI is generated by X [*=-01
g+ (X) and pX™*, where g'(X) is given in Theorem 5 (ii).

Proof. (i) As before, we need to find the smallest xkp form and pxr
form which annihilate g(X) as well as pX". We saw, in Theorem 5, that
g+(X) is the smallest xkp form of degree m — k which annihilates g(X).
If r > k, then pX"g*(X) = 0 since all the coefficients of X"g1(X) are
in pZy2. If r < k, then X* "¢ (X) annihilates g(X) as well as pX".
It is obvious that X*~"g+(X) is the smallest such. Since any pxr form
annihilates pX”, we need the smallest pxr form which annihilates g(X)
which should be pX™~k,

We omit the proof of (ii} which can be proved in the same way. O
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