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A FIXED POINT APPROACH TO THE STABILITY
OF QUADRATIC FUNCTIONAL EQUATION

SooN-Mo JunG, TAE-S00 KiM, AND KI-SUK LEE

ABSTRACT. Cadariu and Radu applied the fixed point method to
the investigation of Cauchy and Jensen functional equations. In
this paper, we adopt the idea of Cidariu and Radu to prove the
Hyers-Ulam-Rassias stability of the quadratic functional equation
for a large class of functions from a vector space into a complete
[B-normed space.

1. Introduction

In 1940, S. M. Ulam [17] gave a wide ranging talk before the math-
ematics club of the University of Wisconsin in which he discussed a
number of important unsolved problems. Among those was the ques-
tion concerning the stability of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(-, -).
Given € > 0, does there exist a 6 > 0 such that if a function h : G1 — G»
satisfies the inequality d(h(zy),h(z)h(y)) < & for all x,y € G,, then
there exists a homomorphism H : G1 — Go with d(h(z), H(z)) < € for
allz € G, 7

The case of approximately additive functions was solved by D. H.
Hyers [7] under the assumption that G; and Gy are Banach spaces.
Indeed, he proved that each solution of the inequality || f(z+vy)— f(z) —
f@W)| < g, for all z and y, can be approximated by an exact solution,
say an additive function. Th. M. Rassias [14] attempted to weaken the
condition for the bound of the norm of the Cauchy difference as follows

I1f (2 +y) — (@) = fF < ellzl” + llyll)
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and generalized the result of Hyers. Since then, the stability of several
functional equations has been extensively investigated.

The terminology Hyers-Ulam-Rassias stability originates from these
historical backgrounds. The terminology can also be applied to the
case of other functional equations. For more detailed definitions of such
terminologies, we can refer to [6, 8, 9, 10, 12, 15].

Let Ey and E3 be real vector spaces. A function f : F3 — Fs is
called a quadratic function if and only if f is a solution function of the
quadratic functional equation

flz+y)+ flz—y) =2f(z) + 2f(y).

It is well known that for each quadratic function f : Fy — Ej, there ex-
ists a unique symmetric biadditive function B : E1 X E1 — E» satisfying
f(z) = B(z,z) for all z € E;.

The Hyers-Ulam stability of the quadratic functional equation was
first proved by F. Skof [16] for functions f : Ey — FEs, where F; is a
normed space and Fj is a Banach space. P. W. Cholewa [3] demonstrated
that Skof’s theorem is also valid if F; is replaced by an abelian group

G (cf [11].)

THEOREM 1. Let G be an abelian group and let E be a real Banach
space. If a function f : G — FE satisfies the inequality

|f(z+y)+ flz—y) —2f(z) —2f(y)| <6

for some 6 > 0 and for all x,y € G, then there exists a unique quadratic
function q : G — E such that

If(x) — q(z)ll < 56

o=

for any z € G.

Thereafter, S. Czerwik [4] proved the Hyers-Ulam-Rassias stability of
quadratic functional equation.

THEOREM 2. Let E7 and Ey be a real normed space and a real Banach
space, respectively, and let p # 2 be a positive constant. If a function
f : By — E, satisfies the inequality

If (@ +y)+ flz—y) — 2f(=) - 2f )|l < e(ll]l” + liwll”)
for some € > 0 and for all z,y € F1, then there exists a unique quadratic
function q : E1 — E5 such that

1£@) = 4@l < g lel?
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for any = € E;.

Recently, L. Cddariu and V. Radu [2] applied the fixed point method
to the investigation of the Cauchy additive functional equation ([1, 13]).
Using such a clever idea, they could present a short, simple proof and
extend the range of relevant functions to the complete G-normed space.

In this paper, we will adopt the idea of Cadariu and Radu to prove
the Hyers-Ulam-Rassias stability of the quadratic functional equation
for a large class of functions between a vector space and a complete
B-normed space.

An advantage of our result is that the range of relevant functions
is extended to any complete (real or complex) (-normed space, while
the existing results concern only the real Banach space as we see in the
preceding theorems.

2. Preliminaries

Let X be a set. A function d: X x X — [0, 00] is called a generalized
metric on X if and only if d satisfies

(M) d(z,y) =0 if and only if z = y;
(Mz) d(z,y) = d(y, z) for all z,y € X;
(Ms) d(z,z) < d(z,y) + d(y, 2) for all z,y,z € X.

Note that the only substantial difference of the generalized metric from
the metric is that the range of generalized metric includes the infinity.

We now introduce one of fundamental results of fixed point theory.
For the proof, refer to [5].

THEOREM 3. Let (X,d) be a generalized complete metric space. As-
sume that A : X — X is a strictly contractive operator with the Lips-
chitz constant L < 1. If there exists a nonnegative integer k such that
d(A**1z A*z) < 0o for some x € X, then the followings are true:

(a) The sequence {A"x} converges to a fixed point z* of A;
(b) x* is the unique fixed point of A in

X* = {y € X |d(A z,y) < oo} ;
(¢) Ify € X*, then

1
) R — .
dy,z") < ;=7 d(Ay,y)
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Throughout this paper, we fix a real number 3 with 0 < 8 < 1 and
let K denote either R or C. Suppose FE is a vector space over K. A
function ||-||g : E — [0, 00) is called a S-norm if and only if it satisfies
(N1) ||lzllp = 0 if and only if z = 0;

(N2) [|Az]|g = |A\P||z||s for all A € K and all « € E;
(N3) llz +ylls < llzllg + [lyllg for all z,y € E.

3. Main results

In the following theorems, by using the idea of Cidariu and Radu (see
[1, 2]), we will prove the Hyers-Ulam-Rassias stability of the quadratic
functional equation in a more general setting.

THEOREM 4. Let Ey and Ey be vector spaces over K. In particular,
let Ey be a complete (B-normed space, where 0 < 3 < 1. Suppose
¢ : Ey X E1 — [0,00) is a given function and there exists a constant L,
0 < L <1, such that

(1) ©(2x,2z) < 4PLo(z, z)

for all x € E,. Furthermore, let f : Ey — E» be a function with f(0) =0
which satisfies

(2) I1f(z+y)+ flz —y) = 2f(x) = 2f(W)lls < ¢(z,y)
for all z,y € E;. If ¢ satisfies
@ Jim LT =

for any x,y € E1, then there exists a unique quadratic function q : E; —
Ey such that

@) 1£@) ~ a(e)le < z5r—g (@)

for all x € Ej.

Proof. If we define
X ={h: Ey — E3| h(0) =0}
and introduce a generalized metric on X as follows
d(g,h) = inf{C € [0,00] | ||g(z) — h(z)||zg < Cp(z,z) for all z € E;},
then (X, d) is complete. (See the proof of [2, Theorem 2.5].)
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We define an operator A : X — X by
1
(AR)(z) = h(2z)

for all z € Ey.
First, we assert that A is strictly contractive-on X. Given ¢g,h € X,
let C € [0, 00] be an arbitrary constant with d(g,h) < C, i.e.,

lg(x) — h(z)llg < Cop(z,z)

for all x € F;. If we replace x in the last inequality by 2z and make use
of (1), then we have

I(Ag)(z) — (AR)(2)lls < LCp(x, z)

for every z € Fi, ie., d(Ag,Ah) < LC. Hence, we conclude that
d(Ag,Ah) < Ld(g, h) for any g,h € X.

Next, we assert that d(Af, f) < oo. If we substitute z for y in (2)
and we divide both sides by 49, then (1) establishes

I(AN)@) ~ F@)ls < gl )

for any = € Fy, i.e.,
1
) dAff) < g5 < oo
Then, it follows from Theorem 3 (a) that there exists a function
q : E1 — E; with ¢(0) = 0, which is a fixed point of A, such that
A"f —q,ie.,

() lim - f(2'2) = g(a)

n—oo

for all x € E;.
Since the integer k of Theorem 3 is 0 and f € X™* (see Theorem 3 for
the definition of X*), by Theorem 3 (c¢) and (5), we obtain

(7) d(f,q) < ﬁd(/\f, n<+ 2t

481 -L°
i.e., the inequality (4) is true for all z € E;.

Now, substitute 2"z and 2"y for x and y in (2), respectively. If we
divide both sides of the resulting inequality by 4™, and letting n go to
infinity, it follows from (3) and (6) that ¢ is a quadratic function.

Assume that inequality (4) is also satisfied with another quadratic
function ¢; : E1 — E3 besides ¢. (As ¢ is a quadratic function, ¢;
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satisfies that ¢1(z) = 3¢1(27) = (Ag1)() for all z € E;. That is, g is a
fixed point of A.) In view of (4) and the definition of d, we know that

1 1
d(.f:Ql) < A1 _ 1 < 00,

ie,q € X*={ye X|d(Af,y) < oco}. (In view of (5), the integer k of
Theorem 3 is 0.) Thus, Theorem 3 (b) implies that ¢ = q;. This proves
the uniqueness of q. O

We will now generalize the above theorem by removing the hypothesis
f(0) = 0 and we get the following theorem.

THEOREM 5. Let Ey be a vector space over K and let Es be a complete
B-normed space over K, where 0 < 8 < 1. Suppose a function ¢ :
E; x Ey — [0,00) satisfies the condition (3) for all z,y € E; and there
exists a constant L, 4% < L < 1, for which the inequality (1) holds for
any x € Ey. If a function f : E; — Ej satisfles the inequality (2) for
all z,y € E4, then there exists a unique quadratic function q : E1 — Ej
such that

I1f(2) = f(0) ~ q(=z)llg <

for all x € E.

11
481~ L

[inf{cp(z,O) | ¥AS El} + (P(CB,ZC)]

Proof. Putting y = 0 in (2) yields

12£(0)lls < p(z,0)
for any x € E;. We define a function g : E1 — E by g(z) = f(z)— f(0).
If we set
P(z,y) = o + o(z,y)
for each z,y € E1, where ¢y = inf{p(z,0) |x € E1}, it then follows from
(2) that
lg(z +y) + g9(z —y) — 29(x) = 29(y)llp < ¥(z,y)
for all z,y € Ej.
Considering (1) and L > 4%, we see that

¥(22,25) = o + (22,2z) < o + 4° Lp(z,x) < 4P Lp(z, z)
for any = € Ej.
Moreover, we make use of (3) to verify that
(2%, 2%) L o+ (2, 2%y)
d S = S =

for every z,y € E.

0
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According to Theorem 4, there exists a unique quadratic function
q : By — E, satisfying inequality (4) with g instead of f. This completes
our proof. O]

By a similar way as in the proof of Theorem 4, we also apply Theo-
rem 3 and prove the following theorem.

THEOREM 6. Let E, and E; be a vector space over K and a complete
B-normed space over K, respectively. Assume that ¢ : E1 x By — [0, 00)
is a given function and there exists a constant L, 0 < L < 1, such that

® o(2,2) < 5Lp(20, 20)

for all x € E;. Furthermore, assume that f : E; — Ej is a given
function with f(0) = 0 and satisfies the inequality (2) for all z,y € Ej.
If ¢ satisfies
cn L
Jim 4700 ( 55 55) =0
for every x,y € Ei, then there exists a unique quadratic function q :
Ey — E5 such that

Q 1£(@) - a@lls < g5z ele2)

for any x € Ej.

Proof. We use the definitions for X and d, the generalized metric on
X, as in the proof of Theorem 4. Then, (X, d) is complete.
We define an operator A: X — X by

(Ah)(z) = 4h<§)

for all z € Ey. We apply the same argument as in the proof of Theorem 4
and prove that A is a strictly contractive operator. Moreover, we prove

1
(10) d(Af ) < 5L
instead of (5).
According to (a) of Theorem 3, there exists a function ¢ : F} — Ej
with ¢(0) = 0, which is a fixed point of A, such that
lim 4 f(gn) = g(x)

n—oo

for each = € E.
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Since the integer k of Theorem 3 is 0 and f € X* (see Theorem 3 for
the definition of X*), using Theorem 3 (c) and (10), we get

1 1 L

1-L°
which implies the validity of inequality (9).

In the last part of proof of Theorem 4, if we replace 2"z, 2™y and 4™8
by %, 7 and 4%;,, respectively, then we can prove that ¢ is a unique
quadratic function satisfying inequality (9) for all z € Ej. 1

Theorem 6 cannot be generalized to the case without the condition
f(0) = 0. For example, if ¢ is continuous at (0,0), then the condition

(8) implies
48N oo
> (= Bt
o@0)> (T ) o(5 )

for any n € N. By letting n — oo, we conclude that ¢(0,0) = 0. And if
we put z =y = 0 in (2), then we get f(0) = 0.

4. Applications

In the following corollaries, using Theorems 4, 5 and 6, we will extend
Theorems 1 and 2 for a nonnegative real number p # 2 and for a complete
B-normed space as the range space.

COROLLARY 7. Fix a positive number p less than 2 and choose a
constant  with g < B < 1. Let Ey and E5 be a normed space over
K and a complete 3-normed space over K, respectively. If a function
f : B4 — Es satisfies

) lf(z+y) + flz—y) —2f(x) = 2f(W)lls < e (ll=]” + llyl*)

for all z,y € E; and for some ¢ > 0, then there exists a unique quadratic
function q : E1 — F» such that

(12) 1£(@) - a(@)ls < W%ﬂumup

for any xz € Ej.

Proof. Putting x = y = 0 in (11), we get f(0) = 0. If we set
o(z,y) = e(||z||P + ||ly||P) for all 2,y € E1 and if we set L = Z;, then we
have 0 < L <1 and

©(2z,2z) = 21P¢||z||P = 2Pp(x, ) = 4P Ly(z, )
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for all x € Ej.
Furthermore, we get
¢(2"z, 2My)
PE Y = L (ol + ) — 0, as - oo
for any z,y € E.
According to Theorem 4, there exists a unique quadratic function
q : By — E» such that the inequality (12) holds for every z € Ej. O

In the following corollary, we deal with the inequality (11) for the
case p = 0. We need only to set L = 4—1[,— and apply Theorem 5 for its
proof.

COROLLARY 8. Let Ey and Ey be a vector space over K and a com-
plete B-normed space over K respectively, where 0 < 3 < 1. If a function
f + B1 — E» satisfies the inequality

If(x+y)+ flz—y)~2f(z) - 2f(y)llg <

for all z,y € E; and for some § > 0, then there exists a unique quadratic
function q : Ey — Ey such that

1£(@) - £0) — a(@)lp <

4% —1

for any x € E;.

The last corollary with 4 = 1 yields a larger upper bound, %, than
¢ of Theorem 1 for the difference between f(z) — f(0) and g(z).

In the following corollary, we assume that § is a constant with 0 <
B<1

COROLLARY 9. Assume that p is a real constant larger than 2. Let
Ey and E3 be a normed space over K and a complete 3-normed space
over K, respectively. If f : E; — Ej is a function with f(0) = 0 and
satisfies the inequality (11) for all z,y € E; and for some € > 0, then
there exists a unique quadratic function q : E1 — FEs such that the
inequality (12) holds for all x € E;.

Proof. If we set p(x,y) = e(||z||P + |ly|P) for any z,y € E1, then we
obtain

1
plz,z) = 2el2ll’ = 5 Lp(22,22)
48
%

for each x € Ey, where L = 55 is less than 1 because 0 < 8 < 1 and
p> 2. :
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Moreover, we have

r Yy
422, 1) = L7 (e + JulF) - 0, asm — oo

for all z,y € E;.

In view of Theorem 6, there exists a unique quadratic function g :
E; — E, for which the inequality (12) is true for any z € Ej. (I

We remark that the conclusions of Corollaries 7 and 9 are consistent
with that of Theorem 2.
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