ON THE WEAK LAW OF LARGE NUMBERS FOR SEQUENCES OF BANACH SPACE VALUED RANDOM ELEMENTS

NGUYEN VAN QUANG AND LE HONG SON

ABSTRACT. We establish a weak law of large numbers for sequence of random elements with values in *p*-uniformly smooth Banach space. Our result is more general and stronger than some well-known ones.

1. Introduction and notations

Recently, the weak law of large numbers (w.l.l.n.) in Banach space has been studied by many authors (see [1], [3], [6]). The aim of this paper is to establish a weak law of large numbers for sequence of random elements in p-uniformly smooth Banach space. Our result is more general and stronger than some well-known ones in [2] (for details see below).

Let us begin with some definitions and notations. A real separable Banach space \mathcal{X} is said to be p-uniformly smooth $(1 \leq p \leq 2)$ if

$$\rho_*(\tau) = \sup\{\frac{\|x+y\|}{2} + \frac{\|x-y\|}{2} - 1; \|x\| = 1; \|y\| = \tau\} \leqslant C\tau^p$$

for some constant C.

THEOREM 1.1. (see [7]) (Assouad, Hoffmann Jørgensen) A real Banach space \mathcal{X} is p-uniformly smooth if and only if there exists a positive K such that for all $x, y \in \mathcal{X}$ we have

$$||x + y||^p + ||x - y||^p \le 2||x||^p + K||y||^p.$$

THEOREM 1.2. (see [7]) (Assouad) A real separable Banach space \mathcal{X} is p-uniformly smooth $(1 \leq p \leq 2)$ if and only if all $q \geq 1$, there

Received July 18, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 60F05.

Key words and phrases: weak law of large numbers, martingale, p-uniformly smooth Banach space.

This work was supported in part by the National Science Council of Vietnam.

exists a positive constant C such that for all \mathcal{X} - valued martingale $\{M_n, \mathcal{F}_n, n \geq 1\}$ we have

$$E||M_n||^q \leqslant CE(\sum_{i=1}^n ||dM_i||^p)^{q/p} \text{ (with } dM_i = M_i - M_{i-1}).$$

(Marcinkiewicz-Zygmund inequality)

In [1], Adler, Rosalsky, and Volodin have taken notion about martingale type p Banach spaces: A real separable Banach space \mathcal{X} is said to be martingale type p $(1 \leq p \leq 2)$ if there exists a finite constant C such that for all martingale $\{S_n, n \geq 1\}$ with values in \mathcal{X} then

$$\sup_{n\geqslant 1} E \|S_n\|^p \leqslant C \sum_{i=1}^{\infty} E \|S_n - S_{n-1}\|^p.$$

By Marcinkiewicz-Zygmund inequality we derive that a p-uniformly smooth Banach space is a martingale type p Banach space.

In this paper we assume that \mathcal{X} is a p-uniformly smooth Banach space $(1 \leq p \leq 2), \{X_n, n \geq 1\}$ is a sequence of random elements with values in \mathcal{X} , (\mathcal{F}_n) is a sequence of σ - algebras such that X_n - \mathcal{F}_n measurable for all $n = 1, 2, \ldots$

2. Results

The main aim of this paper is to prove the following result.

THEOREM 2.1. Let $(S_n = \sum_{i=1}^n X_i)$ be a sequence of random elements with values in \mathcal{X} and (b_n) a sequence of positive numbers with $b_n \uparrow \infty$ as $n \longrightarrow \infty$. Then writing $X_{ni} = X_i I_{(\parallel X_i \parallel \leqslant b_n)}, \ 1 \leqslant i \leqslant n$, we have that

$$(2.1) b_n^{-1} S_n \xrightarrow{P} 0 as n \longrightarrow \infty, if$$

(2.2)
$$\sum_{i=1}^{n} P(\|X_i\| > b_n) \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty,$$

(2.3)
$$b_n^{-1} \sum_{i=1}^n E(X_{ni}/\mathcal{F}_{i-1}) \xrightarrow{P} 0 \text{ as } n \longrightarrow \infty,$$

(2.4)
$$b_n^{-p} \sum_{i=1}^n E \|X_{ni} - E(X_{ni}/\mathcal{F}_{i-1})\|^p \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty.$$

Proof. Let
$$S_{nn} = \sum_{i=1}^{n} X_{ni}$$
. Then we have

$$P\left(\frac{S_{nn}}{b_n} \neq \frac{S_n}{b_n}\right)$$

$$\leqslant P\left(\bigcup_{i=1}^n \{X_{ni} \neq X_i\}\right)$$

$$\leqslant \sum_{i=1}^n P(X_{ni} \neq X_i)$$

$$= \sum_{i=1}^n P(\|X_i\| > b_n) \longrightarrow 0, \quad n \longrightarrow \infty \text{ (by (2.2))},$$

and it suffices to show that $b_n^{-1}S_{nn} \xrightarrow{P} 0$ as $n \longrightarrow \infty$. By (2.3), we have

$$b_n^{-1} \sum_{i=1}^n E(X_{ni}/\mathcal{F}_{i-1}) \xrightarrow{P} 0 \text{ as } n \longrightarrow \infty.$$

So that it suffices to prove that

$$b_n^{-1} \sum_{i=1}^n \left[X_{ni} - E(X_{ni}/\mathcal{F}_{i-1}) \right] \xrightarrow{P} 0 \text{ as } n \longrightarrow \infty.$$

Let
$$Y_{nk} = \sum_{i=1}^{n} [X_{ni} - E(X_{ni}/\mathcal{F}_{i-1})], \quad 1 \le k \le n, \quad n = 1, 2,$$

By noting that $(Y_{nk}, \mathcal{F}_k; 1 \leq k \leq n)$ is a martingale on \mathcal{X} , we have,

$$P\left(\|b_{n}^{-1}\sum_{i=1}^{n}\left[X_{ni}-E(X_{ni}/\mathcal{F}_{i-1})\right]\|>\varepsilon\right)$$

$$\leqslant \varepsilon^{-p}b_{n}^{-p}E\|\sum_{i=1}^{n}\left[X_{ni}-E(X_{ni}/\mathcal{F}_{i-1})\right]\|^{p} \qquad \text{(Markov's inequality)}$$

$$= \varepsilon^{-p}b_{n}^{-p}E\|Y_{nn}\|^{p}$$

$$\leqslant \varepsilon^{-p}b_{n}^{-p}CE\left(\sum_{i=1}^{n}\|Y_{ni}-Y_{n(i-1)}\|^{p}\right) \text{(Marcinkiewicz-Zygmund inequality)}$$

$$= C\varepsilon^{-p}b_{n}^{-p}\sum_{i=1}^{n}E\|X_{ni}-E(X_{ni}/\mathcal{F}_{i-1})\|^{p} \to 0 \text{ as } n \to \infty \quad \text{(by (2.4))},$$
which completes the proof.

which completes the proof.

In the case, when $\mathcal{X} = \mathbb{R}$ then p = 2 and $E|X_{ni} - E(X_{ni}/\mathcal{F}_{i-1})|^2 = EX_{ni}^2 - E[E(X_{ni}/\mathcal{F})]^2$. The following corollary follows immediately from theorem 2.1.

COROLLARY 2.2. Let $(S_n = \sum_{i=1}^n X_i)$ be a sequence of random variables and (b_n) a sequence of positive numbers with $b_n \uparrow \infty$ as $n \longrightarrow \infty$. Then writing $X_{ni} = X_i I_{\{|X_i| \leq b_n\}}$, $1 \leq i \leq n$, we have that

$$(2.1)'$$
 $b_n^{-1}S_n \xrightarrow{P} 0$ as $n \longrightarrow \infty$, if

$$(2.2)' \qquad \sum_{i=1}^{n} P(|X_i| > b_n) \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty,$$

$$(2.3)' b_n^{-1} \sum_{i=1}^n E(X_{ni}/\mathcal{F}_{i-1}) \xrightarrow{P} 0 \text{ as } n \longrightarrow \infty,$$

$$(2.4)' b_n^{-2} \sum_{i=1}^n \{ EX_{ni}^2 - E(X_{ni}/\mathcal{F}_{i-1})^2 \} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

The below example shows that the above corollary is stronger than the theorem 2.13 in [2] which considered the same problem under the assumption: $(S_n = \sum_{i=1}^n X_i, ; \mathcal{F}_n)$ is a martingale.

Let (Y_i) be a sequence of independent and identically distributed random variables such that

$$P(Y_i = -1) = P(Y_i = 1) = \frac{1}{2}.$$

Then $EY_i = 0$ ($\forall i = 1, 2, \ldots$) and

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}\stackrel{P}{\to}0 \text{ as } n\to\infty.$$

Put

$$X_i = Y_i + \frac{1}{i} .$$

Then $EX_i = \frac{1}{i}$ ($\forall i = 1, 2 \cdots$) and

$$\frac{1}{n}\sum_{i=1}^{n} X_i = \frac{1}{n}\sum_{i=1}^{n} Y_i + \frac{1}{n}\sum_{i=1}^{n} \frac{1}{i} \stackrel{P}{\to} 0 + 0 = 0 \text{ as } n \to \infty.$$

Thus, $(S_n = \sum_{i=1}^n X_i)$ satisfies the condition (2.1)' and it also satisfies the conditions (2.2)', (2.3)', (2.4)' (with $b_n = n$). (Because (X_i) is the sequence of independent random variables and in this case, the conditions (2.2)', (2.3)', (2.4)' are necessary as well as sufficient for the condition (2.1)' (see [5], p. 290)). But $(S_n = \sum_{i=1}^n X_i, ; \mathcal{F}_n)$ is not a martingale. $(\mathcal{F}_n$ denote the σ - algebra generated by $(X_i; 1 \leq i \leq n)$). It shows that the martingale condition of $(S_n = \sum_{i=1}^n X_i; \mathcal{F}_n)$ in the theorem 2.13 of [2] is too strong.

Let (X_n) , X be random elements in \mathcal{X} . The sequence $\{X_n, n \geq 1\}$ is said to be stochastically dominated by X if there exists a constant C > 0 such that $P\{\|X_n\| \geq t\} \leq CP\{\|X\| \geq t\}$ for all nonnegative real numbers t and for all $n \geq 1$. In this case, we write $(X_n) \prec X$.

LEMMA 2.3. (see [4]) Assume $f_n: \mathbb{R} \longrightarrow \mathbb{R}^+$ satisfy: $0 \leqslant f_n \leqslant 1$; $n = 1, 2, \ldots$ and $\sup_{n \in \mathbb{N}} (x f_n(x)) \longrightarrow 0$ as $x \longrightarrow \infty$. Then

$$\sup_{n\in\mathbb{N}} \left(\frac{1}{y} \int_{0}^{y} x f_n(x) dx \right) \longrightarrow 0 \quad \text{as} \quad y \longrightarrow \infty.$$

COROLLARY 2.4. Let $(S_n = \sum_{i=1}^n X_i, \mathcal{F}_n)$ be a martingale on \mathcal{X} . If $(X_n) \prec Y$ with $Y \in L^1(\Omega, \mathcal{F}, P)$, then

$$(2.5) n^{-1}S_n \xrightarrow{P} 0 \text{ as } n \longrightarrow \infty.$$

Proof. We'll prove that (X_n) satisfies all conditions of Theorem 2.1. Let $X_{ni} = X_i I_{(||X_i|| \le n)}, \quad 1 \le i \le n$.

At first we have

(2.6)
$$\sum_{i=1}^{n} P(\|X_i\| \geqslant n) \leqslant CnP(\|Y\| \geqslant n) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Next, for arbitrary $\varepsilon > 0$ we have

$$P(\|n^{-1}\sum_{i=1}^{n}E(X_{ni}/\mathcal{F}_{i-1})\| > \varepsilon)$$

$$\leqslant \varepsilon^{-1}n^{-1}E\| \sum_{i=1}^{n}E(X_{ni}/\mathcal{F}_{i-1})\|$$

$$= \varepsilon^{-1}n^{-1}E\| \sum_{i=1}^{n}E\left[(X_{i} - X_{i}I_{(\|X_{i}\| > n)}/\mathcal{F}_{i-1}] \|$$

$$\leqslant \varepsilon^{-1}n^{-1}E \sum_{i=1}^{n}E(\|X_{i}\|I_{(\|X_{i}\| > n)}/\mathcal{F}_{i-1})$$

$$(2.7) \qquad = \varepsilon^{-1}n^{-1}\sum_{i=1}^{n}E\|X_{i}\|I_{(\|X_{i}\| > n)} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

$$(\because E\|X_{i}\| = \int_{0}^{\infty}P(\|X_{i}\| \geqslant x)dx \leqslant \int_{0}^{\infty}CP(\|Y\| \geqslant x)dx = CE\|Y\| < \infty).$$

At the end, we have

$$n^{-p} \sum_{i=1}^{n} E \|X_{ni} - E(X_{ni}/\mathcal{F}_{i-1})\|^{p}$$

$$\leq n^{-p} \sum_{i=1}^{n} E \left[2\|X_{ni}\|^{p} + KE(\|X_{ni}\|^{p}/\mathcal{F}_{i-1}) \right]$$

$$= n^{-p} C' \sum_{i=1}^{n} E \|X_{ni}\|^{p}$$

$$= C' n^{-p} \int_{0}^{n} P(\|X_{i}\|^{p} \geqslant x) dx$$

$$\leq C' n^{-p} \int_{0}^{n} p x^{p-1} P(\|X_{i}\|^{p} \geqslant x) dx$$

$$\leq C' n^{-p} n \int_{0}^{n} p x^{p-2} x P(\|Y\| \geqslant x) dx$$

$$\leq C' n^{-p} n \int_{0}^{n} p x^{p-2} x P(\|Y\| \geqslant x) dx$$

$$\leq C' p n^{-1} \int_{0}^{n} x P(\|Y\| \geqslant x) dx \longrightarrow 0, \text{ as } n \longrightarrow \infty$$

(The last inequality follows from Lemma 2.2 with $f_n(x) = P(||Y|| \ge x)$, n = 1, 2, ...).

Combining (2.6), (2.7) and (2.8) we get (2.5) and which completes the proof. \Box

COROLLARY 2.5. Let $(S_n = \sum_{i=1}^n X_i, \mathcal{F}_n)$ be a martingale on \mathcal{X} . If $\sup_n E \|X_n\|^p < \infty$, then

(2.9)
$$n^{-\frac{1}{q}}S_n \xrightarrow{P} 0 \text{ as } n \longrightarrow \infty \text{ (with } 0 < q < p).$$

Proof. We'll prove that (X_n) satisfies all conditions of Theorem 2.1 with $b_n = n^{\frac{1}{q}}$.

with
$$b_n = n^{\frac{1}{q}}$$
.
Let $X_{ni} = X_i I_{(\|X_i\| \leqslant n^{\frac{1}{q}})}$. Then we have

$$\sum_{i=1}^{n} P(\|X_i\| > n^{\frac{1}{q}})$$

$$\begin{cases}
\sum_{i=1}^{n} n^{-\frac{p}{q}} E \|X_i\|^p \\
= n^{-\frac{p}{q}} \sum_{i=1}^{n} E \|X_i\|^p \\
\leqslant n^{-\frac{p}{q}+1} \sup_{n} E \|X_n\|^p \longrightarrow 0 \text{ as } n \longrightarrow \infty.
\end{cases}$$

For arbitrary $\varepsilon > 0$ we have

$$P\left(n^{-\frac{1}{q}} \| \sum_{i=1}^{n} E(X_{ni}/\mathcal{F}_{i-1}) \| > \varepsilon\right)$$

$$\leqslant \varepsilon^{-p} n^{-\frac{p}{q}} E \| \sum_{i=1}^{n} E(X_{ni}/\mathcal{F}_{i-1}) \|^{p}$$

$$\leqslant \varepsilon^{-p} n^{-\frac{p}{q}} E \sum_{i=1}^{n} E\left(\|X_{i}\|^{p} I_{(\|X_{i}\| \leqslant n^{\frac{1}{q}})}/\mathcal{F}_{i-1}\right)$$

$$\leqslant \varepsilon^{-p} n^{1-\frac{p}{q}} E(\|X_{i}\|^{p} I_{(\|X_{i}\| > n^{\frac{1}{q}})}/\mathcal{F}_{i-1}) \xrightarrow{P} 0 \text{ as } n \longrightarrow \infty.$$

$$(2.11)$$

At the end we have

$$n^{-\frac{p}{q}} \sum_{i=1}^{n} E \|X_{ni} - E(X_{ni}/\mathcal{F}_{i-1})\|^{p}$$

$$\leq n^{-\frac{p}{q}} C \sum_{i=1}^{n} E \|X_{ni}\|^{p}$$

$$= Cn^{-\frac{p}{q}} \sum_{i=1}^{n} \left[E \|X_{i}\|^{p} - E \|X_{i}\|^{p} I_{(\|X_{i}\| > n^{\frac{1}{q}})} \right]$$

$$\leq Cn^{-\frac{p}{q}} \sum_{i=1}^{n} E \|X_{i}\|^{p}$$

$$\leq Cn^{1-\frac{p}{q}} \left(\sup_{n} E \|X_{n}\|^{p} \right) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Combining (2.10), (2.11) and (2.12) we get (2.9) and which completes the proof. \Box

References

- [1] A. Adler, A Rosalsky, and A. I. Volodin, Weak laws with random indices for arrays of random elements in Rademacher type p Banach spaces. J. Theoret. Probab. (1997), no. 3, 605–623.
- [2] P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press, New York, 1980.
- [3] D. H. Hong, M. Ordóñez Cabrera, S. H. Sung, and A. I. Volodin, On the weak law for randomly indexed partial sums for arrays of random elements in martingale type p Banach spaces, Statist. Probab. Lett. 46 (2000), no. 2, 177–185.
- [4] N. V. Hung and N. D. Tien, On the convergence of weighted sums of martingale differences, Acta Math. Vietnam. 13 (1988), no. 1, 43-53.
- [5] M. Loève, *Probability Theory I*, 4th ed., Graduate Texts in Mathematics, Vol. 45, Springer-Verlag, Berlin and New York, 1977.
- [6] S. H. Sung, Weak law of large numbers for arrays of random variables, Statist. Probab. Lett. 42 (1998), no. 3, 293–298.
- [7] W. A. Woyczynski, Geometry and martingale in Banach spaces II. Independent increments, Marcel Dekker, Press New York, 1978.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VINH, VIETNAM *E-mail*: nvquang@hotmail.com hongsondhv@yahoo.com