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FUZZY 2-(0- OR 1-)PRIME IDEALS IN SEMIRINGS

P. DHEENA AND S. COUMARESSANE

ABSTRACT. In this paper three different types of fuzzy prime ideals
are introduced. Condition is obtained for a fuzzy 2-prime ideal will
have two elements in its range. It has been shown that A is fuzzy
2-prime ideal of the semiring R if and only if 1 — A is a fuzzy mo-
system in R.

1. Introduction

In 1965, Zadeh [19] introduced the concept of fuzzy subsets and stud-
ied their properties on the parallel lines to set theory. In 1967, Rosen-
feld [14] defined the fuzzy subgroup and gave some of its properties.
Rosenfeld’s definition of a fuzzy group is a turning point for pure math-
ematicians. Since then, the study of fuzzy algebraic structure has been
pursued in many directions such as groups, rings, modules, vector spaces
and so on. In 1981, Das [3] explained the inter-relationship between the
fuzzy subgroups and its t-level subsets. Fuzzy subrings and ideals are of
comparatively recent origin and were first introduced by Wang-jin Liu
[10] in the year 1982. Subsequently, Mukherjee and Sen [12], Swamy
and Swamy [16], Yue [18], Dixit et al [4] and Rajesh Kumar [8] applied
some basic concepts pertaining to ideals from classical ring theory and
developed a theory of fuzzy. T. K. Dutta and B. K. Biswas [5] studied
fuzzy ideals, fuzzy prime ideals of semirings, and they defined fuzzy k-
ideals of semirings and characterized fuzzy prime k-ideals of semirings
of non-negative integers.

This paper contains four sections, the first section is merely introduc-
tion. In section 2, we have initiate a notion of fuzzy 2-(0- or 1-)prime
ideal, fuzzy k-closure and fuzzy mg (mg or my) - system and also give
some basic definitions and results which will be used later. In section 3,
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we have shown that if R is a semiring containing a proper k-ideal A,
with m # A(0) and if A is a fuzzy 2-prime ideal of R, then |[Im(A)| = 2.
The condition that the semiring R contains a proper k-ideal A,, with
m # A(0) is necessary. By an example, we have shown that theorem
will fail if we drop that condition. In section 4, we have come across
that a fuzzy subset p in semiring R holds a property like subgroup, ideal
etc., if and only if its level subset p, for all ¢t € [0, 1], also satisfies the
same property in R. However if i is a fuzzy subset of R such that level
subset y is an mg (mg or my) - system in R, for all ¢t € [0, 1], then u
is not necessarily a fuzzy mo (mp or mq) - system of R. Nevertheless we
have shown that if 4 is a fuzzy subset in R with z; € (z); (21 € (z))
implies p(z1) > p(z), then p is a fuzzy mg (mg or my) in R if and only
if u" = {z € R/p(x) > r} is an my (mp or m,) system in R.

2. Preliminary notes

We would like to reproduce some definitions and results proposed by
the pioneers in this field earlier.

An algebra (R, +, -) is said to be a semiring [15] if (R, +) and (R, -)
are semigroups satisfying a.(b + ¢) = a.b + a.cand (b + ¢).a =
b.a + c.a for all a, b, ¢ € R. A semiring R may have an identity 1,
definedby l.a = a = a.1, and a zero 0, defined by 0 +a = a = a+0
anda.0 =0 = 0.afor all a € R.

From now on we write R for semirings. A nonempty subset I of R is
said to be a left (resp., right) ideal if z, y € I and r € R imply that
z+y €l and rz €I (resp., xr € I). If I is both left and right ideal
of R, we say [ is a two-sided ideal, or simply ideal of R. A left ideal 7
of a semiring R is said to be a left k-ideal if a € I and x € R and if
a +zxz€lorx + a€lthen z € I. Right k-ideal is defined dually, and
two sided k-ideal or simply a k-ideal is both a left and a right k-ideal.
The ideal generated by a, a € R, is defined as the smallest ideal of R,
which contains a and is denoted by (a). The k-ideal generated by a,
@ € R, is defined as the smallest k-ideal of R, which contains a and is
_ denoted by {a).

DEFINITION 2.1. Let S be any set. A mapping p: S — [0,1] is called
a fuzzy subset of S.

A fuzzy subset p : S — [0,1] is nonempty if p is not the constant
map which assumes the value 0. For any two fuzzy subsets A and p of
S, A C pu means that A(a) < p(a) for all a € S. 1 — f is a fuzzy subset of



Fuzzy 2-(0- or 1-)prime ideals in semirings 561

S defined by (1 — f)(z) =1— f(z) for all z € S. If p is a fuzzy subset of
R, then the image of p denoted by Im(u) = {u(r)|r € R} and |Im y|
denotes the cardinality of Im u. For any fuzzy subset y of R, R, denotes
the subset {z € R|u(z) = p(0)} of R. The characteristic function of a
subset I of R is denoted by x;.

DEFINITION 2.2. Let u be any fuzzy subset of R. For ¢t € [0, 1], the
set uy = {x € R/u(z) >t} is called a level subset of p.

DEFINITION 2.3. Let f and g be any two fuzzy subsets of R. Then
fng, fUg, f+gand f- g are fuzzy subsets of R defined by
(f Ng)(z) = min{f(x), g(x)}
(f Ug)(z) = max{f(z), g(x)}. The sum f + g is defined by
sup {min{f(y), g(2)}} if z is expressed as
r=y+z
r=y+z

(f+9)(z) =
0 otherwise.

The product f o g is defined by
sup {min{f(y), g(2)}} iz is expressed asz =yz

(f:9)(e) = { ==z
0 otherwise.

DEFINITION 2.4. For any z € R and t € [0, 1], we define the fuzzy
oint z; as z(y) = toify=z
P t NEY 0 ify # T.

If x; is a fuzzy point and u is any fuzzy subset of R and z; C u, then

we write 2; € u. Note that z; € u, if and only if x € us, where u; is a

level subset of p. For any fuzzy subset f of R, it is obvious that f =

U ag.

at€f

DEFINITION 2.5. A fuzzy subset p of R is said to be a fuzzy left (resp.,
right) ideal of R if

u(w+y) > min{u(z), p(y)}, and |

w(zy) = uly) (resp., p(zy) > p(z)) for all z, y in R.

1 is a fuzzy ideal of R if it is both a fuzzy left and a fuzzy right ideal
of R.

LEMMA 2.6. Let I be an ideal of R and o < 8 # 0 € [0, 1]. Then the
fuzzy subset defined by

Alz) = { pif zel is a fuzzy ideal of R.

a if otherwise,

Proof of the Lemma is a routine matter of checking, so we omit it.
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DEFINITION 2.7. A fuzzy ideal p of R is said to be a fuzzy k-ideal of
R if p(z) > min{ max{p(z +y), p(y + )}, p(y)} forall z, y € R.

If R is additively commutative, then the condition reduces to u(x) >
min{ u(z +vy), p(y)} for all z, y € R.

Note that every fuzzy ideal of a ring is a fuzzy k-ideal. Here after we
consider only additively commutative semiring R and nonempty fuzzy
subsets of R.

ExAMPLE 2.8. [5] Let u be a fuzzy subset of N of natural numbers
defined by
0.3, if =xisodd,
p(z) =< 0.5, if zis nonzero even,
1, if z=0.
Then p is a fuzzy k-ideal of N.

EXAMPLE 2.9. [5] Let ¢ be a fuzzy subset of the semiring N of natural
numbers defined by
1, if 7<zx,
plr)y=4¢ 05, if 5<z<T,
0, if 0<z<5.
Then it is easy to show that u is a fuzzy ideal of N, but not a fuzzy
k-ideal of N.

THEOREM 2.10. [2] A fuzzy subset u of R is a fuzzy left (resp., right)
k-ideal of R if and only if, for any t € [0, 1] such that p; # 0, p; is a left
(resp., right) k-ideal of R.

THEOREM 2.11. [6] Let R be a semiring and I C R. Then I is left

(resp., right) k-ideal of R if and only if xr is a fuzzy left (resp., right)
k-ideal of R.

THEOREM 2.12. Let p and \ be fuzzy k-ideals of R. Then pN A is
also fuzzy k-ideal of R.

Proof. Let x, y € R. Then

(kN A) (z + y)=min{u(z +y), Az +y)}
> min{min{px(z), u(y)}, min{\(z), A(y)}}
> min{min{x(z), A(zx)}, min{u(y), A(y)}}
= min{(p N A)(z), (LN A)(Y)},

(11 N) (@)= min{u(zr), Azr)}
> min{u(x), A(x)} [ As u and X are fuzzy right ideals of R]

= (NN ().
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Similarly, we can prove that (LN ) (rz) > (u 0 X)(x)

(nNX)(a+z)A(NA) (@)= pla+z) AXMa+z) A p(z) AXNz)
p(a) A Aa)

(nNA)(a).

Thus g N A is a fuzzy k-ideal of R. O

VIVl

THEOREM 2.13. [5] Let p be a fuzzy k-ideal of semiring with zero.
Then R, is a k-ideal of R.

DEFINITION 2.14. If A is an ideal of R, then A= {a € Rla+z € A
for some x € A} is called k-closure of A.

LEMMA 2.15. If A is an ideal of R, then A is a k-ideal of R.

Proof. Let a1, ag € A. Now a1+, az+22 € A for some 11, 22 € A.
Since A is an ideal, we have (a1 +a2)+ (z1+x2) € A, where 1 +22 € A
and so a; + a2 € A so that 4 is closed under addition. Let a € A. Hence
a+z € A for some z € A. For any r € R, we claim that ar, ra € A.
Since A is an ideal, we have (a + z)r € A and so ar + zr € A. Clearly
zr € A. Hence ar € A. Similarly we can prove that ra € A. Let
a, a+be A Nowa+z, (a+b)+y € A for some z, y € A. Since A
is an ideal, we have [(a +b) + y] + = € A implies b+ [(a + z) + y] € A.
Since (a + ) +y € A we have b € A. Thus A4 is a k-ideal. a

LEMMA 2.16. Let A be an ideal of a semiring R. Then A is a k-ideal
if and only if A = A.

Proof. Assume that A is a k-ideal. Clearly A C A. Let a € A. Then
a+z € A for some z € A. Since z, a+ x € A and since A is a k-ideal
we have a € A. Therefore A C A and hence A = A.

Conversely, let us assume that A = A. By Lemma, 2.15, A is a k-ideal
and hence A is a k-ideal. 0

DEFINITION 2.17. If f is any fuzzy subset of R, then f is defined
as, for any a € R, f(a) = sup{min{f(a + z), f(z)}}. f is called fuzzy
TER

k-closure of f.
Clearly, f < f. When f is fuzzy ideal of ring R, then f = f.

LEMMA 2.18. If f is any fuzzy ideal of R. Then f is a fuzzy k-ideal
of R.
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Proof. Consider
f@)nfy)
={ Y fe+a)nfl)yn{ U {fly+z)nfl)}}

= U {f(gc+z1)ﬂf zl}ﬂ{f(y+22)ﬂf(22)}

21, 22€R

= U _{fl@+z)nfly+z)nf)nf(z)}

z1,22€ R

U {flz+y+{a+2})nfla+2)}

21,22€R

IA

[Since f is a fuzzy ideal of R]

= f(z +y).
flar) = Slelg{min{f (ar + ), f(z)}}
> sup{mm{f(a'r +zr), f(zr)}
zeR
> sup{min{f(a + ), f(z)}.
z€ER
Similarly, we can prove that f(ra) > f(a). Hence f is a fuzzy ideal

of R. |
LEMMA 2.19. Suppose f is a fuzzy k-ideal. Then f = f.

Proof. Since f is a fuzzy k-ideal of R, f(a) > min{f(a + z), f(z)}
for all z, a € R. So

f(a) z sup{min{f(a +z), f(z)}}

zER
= f(a) for alla € R.
Thus f < f. But f < f. Hence f = f. O

LEMMA 2.20. Let B and C' be any fuzzy ideals of R and A be a fuzzy
k-ideal of R. If C B C A implies CBC A, CBCAandCBCA

Proof. Suppose C B C A. Let a € R. Consider
C B(a)
= Y {C(z1)nBy1)}

a=xr1y

- a= gtjlyl{aeR{C(xl + 21) n C(ZI)} " B(yl)}

= Y { U {Clz1+2)NnB(y)NC(z1) N B(y)}}

a=z1Y1 z1€ER

= U {{ U {Cx1+z)nBy) }}H{ZILEJR{Czl)mB(yI)}}}

a=r1y1 21€R
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IA

U {{u A(ivl+Zl)y1)}ﬂ{21LéRA(Z1y1)}}

a=zr1y1  z1€R

U { U Almiyi+215)} 0 {ZILéRA(zlyl)}}

a=ziy1 z1€R

U {A(z1y1)}

a=xi1Yyi1

[ Since A is fuzzy k-ideal of R ]
< A(a).
Thus C B C A. Similarly, we can prove that CBC AandCBC A. [J

DEFINITION 2.21. ‘An ideal P of R is called a 0-(2-)prime ideal if for
any ideals (k-ideals) A, B of R, AB C P implies AC Por BC P.

An ideal P of R is called a 1-prime ideal if for any k-ideal A of R and
for any ideal B of R, AB C P impliess AC Por BCP.

DEFINITION 2.22. A subset M of R is called an mq-system if for every
a, b € M, there exists x € R such that ax b € M.

A subset M of R is called an m-system if for every a, b € M, there
exist a1 € {a)x and by € (b) such that a1 b1 € M.

A subset M of R is called an mq-system if for every a, b € M there
exist a1 € (a)r and by € (b), such that a; by € M.

IA

IA

Now we introduce the different types of fuzzy prime ideals in semiring.
These fuzzy prime ideals coincide in rings.

DEFINITION 2.23. A fuzzy ideal P of R is called a fuzzy 0-(2-)prime
ideal if for any fuzzy ideals (k-ideals) A, B of R, AB C P implies A C P
or BCP.

A fuzzy ideal P of R is called a 1-prime ideal if for any fuzzy k-ideal
A, and for any ideal B of R, AB C P implies AC Por BC P.

LEMMA 2.24. If P is a fuzzy O-prime ideal of R, then P is a fuzzy
2-prime ideal (fuzzy 1-prime ideal) of R.

Proof is obvious.
Now we give an example of a fuzzy 2-prime ideal which is not a fuzzy
O-prime ideal.

ExAMPLE 2.25. Consider the semiring R = {0, 1, 2, 3}, where “+”
and “e” are defined as follows:

+/0 1 2 3 |0 1 2 3
0/0 1 23 0[0 000
11233 110 1 23
2|2 3 3 3 2(0 2 3 3
313333 3/0 3 3 3
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Define P : R — [0, 1] by

1 ifr=0,3
Plz) = { 0 otherwise.

Define f : R— [0, 1] by

1 ifz=0 2 3
flz) = { 0 otherwise.

Clearly P and f are fuzzy ideals and f f C P. But f € P. Hence P
is not fuzzy O-prime. However, P is a fuzzy 2-prime ideal of R.

THEOREM 2.26. If P is a fuzzy k-ideal of R, then P is a fuzzy 0-prime
ideal if and only if P is a fuzzy 2-prime ideal of R.

Proof. Assume that P is a fuzzy 2-prime ideal and P is a fuzzy k-
ideal of R. Let us assume that A and B are fuzzy ideals of R such that
AB C P.By Lemma 2.20, AB C P. As P is a fuzzy k-idealof R, A C P
or BCP.ButAC Aand BC B Thus AC Por BC P. Hence P is a
fuzzy 0-prime ideal of R. |

DEFINITION 2.27. A fuzzy subset f of R is said to be a fuxzy mg-
system if for any ¢, s € [0, 1) and a, b € R, f(a) > t, f(b) > s implies
that there exists € R such that f(axzb) > max{t, s}.

A fuzzy subset f of R is said to be a fuzzy mj-system if for any
t,s €[0,1) and a, b € R, f(a) > t, f(b) > s implies that there exist
aj € {(a)r and by € (b) such that f(a; b1) > max{t, s}.

A fuzzy subset f of R is said to be a fuzzy ma-system if for any
t,s €[0,1) and a, b € R, f(a) > t, f(b) > s implies that there exist
a1 € {(a)r and by € (b)) such that f(a; by) > max{t, s}.

LEMMA 2.28. Every fuzzy mg- system of R is an m1- system and mo-
system of R.

Proof. Let f be a fuzzy mg- system of R. Let a, b € R such that
f(a) > t and f(b) > s, with ¢, s € [0, 1). As f is a fuzzy mo- system
there exists € R such that f(axzb) > max{t, s}. Now az = a1 € (a)x,
by = b € (b)k. Thus f(a1b1) > max{t, s}. Hence f is a mg- system.
Similarly, we can prove if f is a mp- system, then f is a m;~ system. O

The following two Lemmas are easily seen.

LEMMA 2.29. Let f1 and fo be any two fuzzy subsets of R. If f1 < f
and fo < g, then fi fo < f g for any fuzzy subsets f and g.
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LEMMA 2.30. Let a, and by be any two fuzzy points of R such that
ar € f and by € g, where f and g are any fuzzy subset of R. Then

ar bs € f g.

3. Fuzzy 2-(0- or 1-)prime ideal of R

LEMMA 3.1. [Lemma 1.1, [16]] If u is a fuzzy ideal of R and a € R
then p(z) > p(a) for all z € (a).

LEMMA 3.2. If ji is a fuzzy k-ideal of R and a € R, then u(x) > u(a)
for all x € (a).

Proof. Suppose = € (a). Then by Lemma 2.16, z + y € (a) for some
y € {(a). By the above Lemma 3.1, u(z + y) > p(a) and u(y) > u(a).
Thus min{u(z + y), u(y)} > wp(a). Since u is a fuzzy k-ideal, we have
pu(z) > p(a). O

LeMMA 3.3. Let I be a 2-(0- or 1-) prime ideal of R and o € [0, 1).
If 14 is a fuzzy subset of R defined by

() = 1 ifrel,
PE=1 a otherwise,

then p is a fuzzy 2-(0- or 1-) prime ideal of R.

Proof. Let I be a 2- prime ideal of R. By Lemma 2.6, y is a noncon-
stant fuzzy ideal of R. Suppose A and @ are two fuzzy k-ideals of R such
that A 0 C pu, and A € p and 0 € p. Then there exist z, y € R such
that A(z) > u(z) and 0(y) > p(y). These imply that pu(z) = u(y) = o.
Therefore, z, y ¢ I. Since I is a 2-prime ideal of R, {x)x(y)x € I. Hence
there exist ¢ € (z); and d € (y);, such that c-d ¢ I. Let a = cd. So
p(a) = a. Hence (A 8)(a) < u(a) = a. Now

(A 0)(a)= Sllgl{mm{/\(p) 0(q)}}
> min{\(c), 6(d)}
> min{\(z ) 6(y)} [ by Lemma 3.2 |
> min{u(z), pu(y)}

= a,
which contradicts the fact that A 8 C u. Hence  is a fuzzy 2-prime ideal
of R. O

THEOREM 3.4. Let A be any fuzzy subset of R and let R contain a
proper k-ideal A,, with m # A(0). If A is a fuzzy 2-prime ideal of R,
then |[Im(A)| = 2.
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Proof. Since A is not constant, |[Im(A)| > 2. Suppose that |[Im(A4)| >
3. Let A(0) = s, k = g1.b {A(z)|z € R}. Then there exists t € [0, 1]
such that £ < m < s and t > k. Let B and C be fuzzy subsets of R
such that B(z) = 2(t+m) for all z € R and C(z) = k if z ¢ Ay, =
{z € R|A(z) > m}; C(z) = s if z € Ay,. Clearly B is a fuzzy k-ideal
of R. Now we show that C is a fuzzy k-ideal of R. Clearly C is a fuzzy
ideal of R. Let z, y € R. Let us show that C(z) > min{C(z+y), C(y)}.
If C(x) = s, there is nothing to prove. If C(z) = k, let us show that
min{C(z+vy), C(y)} = k. lf not, C(z+y) = s, C(y) = s, theny,z+y €
Am. As Ay, is a k-ideal of R, x € A,,, which is a contradiction. Thus,
C(z +vy) = C(y) = k. Consequently C is a fuzzy k-ideal of R.

We now claim that BC C A. Let x € R. Consider the following cases

(i) z = 0. Then BC(z) = sup {min{B(u), C(v)}} < 2(t+m) < s =

A(0). o
(ii) ¢ # 0, z € Apn. Then A(z) > m, and BC(z) = sup {min{B(u),

Cw)}} < Lt +m) < m=A). B
(iii) £ # 0, x ¢ Am. Then for any u, v € R such that z = uv, u ¢ Ap
and v ¢ Ap. Then C(v) = k. Hence BC(z) = sup {min{B(u),

Cl)}} =k < Az). -

Thus in any case, BC(z) < A(z). Hence BC C A. Now there exists
u € R such that A(u) = t. Then B(u) = 3(t +m) > A(u). Hence
B ¢ A. Also there exists x € R such that A(xz) = m. Then z € A, and
thus C(z) = s > m = A(z). Hence C € A. Thus neither B C A nor
C C A. This shows that A is not a fuzzy 2-prime ideal of R, which is a
contradiction of the hypothesis. Hence [Im(A4)| = 2. O

In Theorem 3.4, the condition that the semiring R contains a proper
k-ideal A,, with m # A(0), is necessary. The following example shows
that the theorem will fail if we drop that condition.

EXAMPLE 3.5. Consider the semiring R = {0, 1, 2, 3}, where + and
e are defined as with Example 2.25. Define u R — [0, 1] by

1 ifx =0,
)13 ifz=3,
W)=\ 14 itz=2,
0 ifz=1.

Since
Ho — {O’ 17 27 3}
Hi/4 = {0, 2, 3}
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Hi/3 = {07 3}

H1 = {O}a
as o, 41, H1/3, p1/4 are ideals and k-ideals are py and pg. There is no
proper k-ideal p,, # po. But p is a fuzzy 2-prime ideal of R such that
[Im(p)| > 2.

THEOREM 3.6. Let A be any fuzzy subset of R and let R contain a
proper k-ideal Ay, with m # A(0). If A is a fuzzy 2-prime ideal of R,
then A(0) = 1.

Proof. Since A is a fuzzy 2-prime ideal, by Theorem 3.4, |[Im(A)| = 2.
Let Im(A) = {t, s} and t < s. Then A(0) = s. Suppose that s # 1. Let
s <n < 1. Let B and C be fuzzy subsets of R such that B(z) = 1(¢+n)
forall z € Rand C(z) =t if 2 ¢ Ay Clz) = n if 2 € Ay, where
A = {z € R|A(z) > m}. Clearly B is a fuzzy k-ideal of R. Since Ay,
is a k-ideal in R, C is a fuzzy k-ideal of R. It can be easily checked
that BC C A. As A(0) = s < n = C(0). This implies that C Z A.
Also there exists = € R such that A(z) =t < 1(t +n) = B(z). Hence
B ¢ A. Thus neither B C A nor C C A. This is a contradiction to the
hypothesis that A is a fuzzy 2-prime ideal of R. Hence A(0) = 1. a

THEOREM 3.7. Let A be any fuzzy subset of R. If |Im(A)| = 2,
A(0) = 1 and the set R4 = {z € R|A(z) = A(0)} is a 2-prime ideal of
R, then A is a fuzzy 2-prime ideal of R.

Proof. Let Im(A) = {t, 1}, t < 1. Then A(0) = 1. Let z,y € R. If
2,y € Ra. Then z + y € R4 and A(z +y) = 1 = min{A(z), A(y)}.
If x € R4 and y ¢ R4, then we have two cases,viz, z +y € Ry or
z+y ¢ Ra. In both cases, A(z +y) > min{A(z), A(y)}. If x ¢ R4 and
y & Ra, then A(z) = A(y) =t and thus A(z + y) > min{A(z), A(y)}.
Hence A(z + y) > min{A(z), A(y)} for all z, y € R. Now if z € Ry,
then zy, yz € R4 and A(zy) = A(yz) = 1. If £ ¢ Ry, then A(zy) >
A(z) =t and A(yz) > A(z) = t. Hence A is a fuzzy ideal of R. Let B
and C be fuzzy k-ideals of R such that BC C A. Suppose that B ¢ A
and C € A, then there exist z, y € R such that B(z) > A(z) and
C(y) > A(y). Clearly A(z) = A(y) = ¢ implies ¢ ¢ R4 and y ¢ Ra.
Now, since R 4 is a 2-prime ideal of R, there exist z1 € (z)x and y1 € (y)x
such that z;y1 ¢ Ra. Thus A(z) = A(y) = A(x1y1) =t. Now

BC(ziy1) = sup {min{B(a), C(b)}}

z1y1=ab
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> min{B(z1), C(y1)}
> min{B(z), C(y)}[ Lemma 3.2 |
>t=A(z11).

Hence BC ¢ A, which is a contradiction of the fact that BC C A. Thus
either B C A or C C A. This implies that A is a fuzzy 2-prime ideal of
R. O

Theorem 3.8 is an immediate consequence of Lemma 3.3, Theorem 3.6
and Theorem 3.7.

THEOREM 3.8. Let A be any fuzzy subset of R and R contain a proper
k-ideal A,, with m # A(0). A is a fuzzy 2-prime ideal of R if and only
if Im(A) = {1, o}, where o € [0, 1) and the ideal R4 is a 2-prime ideal
of R.

4. Fuzzy mq(mp or m;)-systems

EXAMPLE 4.1. A constant fuzzy subset is a fuzzy ma(mg or my)-
system.

THEOREM 4.2. Let M be a subset of R. M is an my (mg or my)-
system in R if and only if the characteristic function of M, f is a fuzzy
ma (mg or my)-system in R.

Proof. Let M be an my-system in R. For any t, s € [0, 1), suppose
there exist a, b € R such that fas(a) > ¢, far(b) > s. Hence a, b € M.
As M is an my-system in R, there exist a; € (a)g, by € (b)g such that
a1 by € M, and hence fyr(a1b1) = 1. Thus far(a1 b1) > max{t, s}.

Conversely, let us assume that fps is a fuzzy mp-system in R. Let
a,be M. Then fy(a) =1 = fa(b). Thus for any ¢, s € [0, 1) far(a) >
t, fa(b) > s. Hence there exist a; € (a)x and by € (b)x such that
far(a1 by) > max{t, s}. Therefore far(a1b1) = 1 and hence a; by € M.

O

REMARK 4.3. Let p be a fuzzy subset in R. p holds a property like
subgroup, ideal etc., if and only if its level subset u; in R also satisfies
the same property in R. However, u is a fuzzy subset in R such that the
level subset p; in R is an mg (mg or my)-system in R, for all ¢ € [0, 1],
does not imply u is a fuzzy mgy (mg or m;)-system of R as the following
example shows.



Fuzzy 2-(0- or 1-)prime ideals in semirings 571

EXAMPLE 4.4. Consider the semiring R = (Zg, Ps, ®¢). Define p :
R — [0, 1] by
1 if z=1
plz)y=¢ 5 if z=3
0 if 2=0,2 4,5.

For any ¢ € [0, 1], ue = {1} or {1, 3} or {0, 1, 2, 3, 4, 5}. Hence p; is
an mg(mg or my)-system in R for all ¢t. But y is not a fuzzy ma(mg or
ma )-system in R, since p(1) > .9, pu(3) > .4 but there is no a1 € (1)
and by € (3)g such that p(a; b1) > max{.9, .4}.

However we have the following Theorem.

THEOREM 4.5. Let y be a fuzzy subset in R with z1 € () (z1 € (z))
implies p(z1) > p(x). p is a fuzzy mo(mgy or my)-system in R if and
only if u" = {z € R/u(z) > r} is an mg (mg or my)-system in R for all
r €0, 1)

Proof. Let p be a fuzzy mo-system in R. Let z,y € u”, for some
r € [0,1). This implies that p(z) > r and p(y) > r. As p is a fuzzy mo-
system in R, there exist 21 € (z)y and y1 € (y)x such that pu(zi ) > r
implies z1 41 € p". Thus y" is an mg-system in R.

Conversely, let us assume that y” is an mo-system in R for all r €
[0, 1). Suppose that p(xz) > r and u(y) > s, for some 7, s € [0, 1) and
z,y € R. If r = s, the result is immediate. Without loss of generality
let us assume that s > . Now u(x) > r and u(y) > s > r. Since y" is
an mg-system in R, then there exist z1 € (z)x and y1 € (y)x such that
p(zryr) > r. Now z1y1 € (y)r and p(x1y1) > p(y) > s. Thus p is a
fuzzy mo-system of R. - O

THEOREM 4.6. Let A be a fuzzy ideal of R and R contain a proper
k-ideal An, with m # A(0). A is a fuzzy 2-(0- or 1-) prime ideal of R if
and only if 1 — A is a fuzzy mg (mo or my)-system of R.

Proof. Let us assume that A is a fuzzy 2-prime ideal of R. For any
t, s € [0, 1), suppose there exist a, b € R such that (1 — A)(a) > ¢ and
(1—A)(b) > s. Hence A(a) <1—tand A(b) < 1—s. As A is a fuzzy 2-
prime ideal of R, Im(A) ={1, a},a€[0,1). Thusa<l—t, a<l-—s
and A(a) = A(b) = . Let P = {z € R/A(z) = 1}. Then by Theorem
3.8, Pis a 2-prime ideal in R and a, b ¢ P. This implies a, b € R|P which
is an mg-system in R. Thus there exist a1 € (a)x and by € (b); such that
A(a1b1) = o. Now A(a1 b1) = o < min{(1~t), (1-9)} = 1 —max{t, s}.
Now max{t, s} <1— A(a1b1) = (1 — A)(a1 b).
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Conversely, let us assume that 1 — A is a fuzzy mg-system of R.
Let A;, Ay be two fuzzy k-ideals such that A; A2 C A. Suppose that
A; € Aand A2 € A Now A1 = | ap and A = |J bg. Then

ap €Ay by €As
there exist as € Ay and b; € Ag, s, t € [0, 1), such that A(a) < s and
A(b) < t. This implies that 1 — A(a) > 1—s,1— A(b) > 1 —t. As
1 — A is a fuzzy mo-system of R, there exist a; € (a)y and by € (b)g
such that (1 — A)(a1 b1) > max{(1—s), (1 —¢)} = 1 — min{s, ¢}. Thus
A(a1b1) < min{s, t} and (a101)min{ss} ¢ A- Now by Lemma 2.29 and
Lemma 2.30, (a1b1)min{s}= (a1)s (b1); € A1 A2 C A, a contradiction.
Therefore A is a fuzzy 2-prime ideal of R. O
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