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A STRONG SOLUTION FOR THE WEAK
TYPE II GENERALIZED VECTOR
QUASI-EQUILIBRIUM PROBLEMS

WoN Kyu KiMm AND SANGHO KuMm

ABSTRACT. The aim of this paper is to give an existence theorem
for a strong solution of generalized vector quasi-equilibrium prob-
lems of the weak type II due to Hou et al. using the equilibrium
existence theorem for 1-person game, and as an application, we
shall give a generalized quasivariational inequality.

1. Introduction

Equilibrium problems include various problems related to optimiza-
tion theory. In particular, equilibrium problems contain a number of
important problems as fixed point problems, coincidence point prob-
lems, Nash equilibria problems, variational inequalities, complementar-
ity problems, maximization problems and so on. Till now equilibrium
problems have been generalized in diverse directions, and generalized
vector quasi-equilibrium problems (GVQEP) have been extensively stud-
ied by many authors recently (e.g., see [1, 3-5, 7-10]). In most papers,
main interests have been paid to get such sufficient conditions for more
general problem settings and under weaker assumptions about continu-
ity, convexity, compactness and monotonicity.

Until now, only a few papers deal with these problems in the strong
sense, and most of results need the various conditions of pseudomono-
tonicity and convexity to obtain the solutions of weak sense. Also in
most proofs of previous existence theorems on equilibrium problems,
the proving tools are either the Fan-Glicksberg fixed point theorem or
the (generalized) KKM theorem, and using those theorems, we shall
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need some additional assumptions to find solutions for (GVQEP) as in
1, 3-5, 7-10].

In a recent paper [9], Hou et al. investigated the four types of gen-
eralized vector quasi-equilibrium problems, and using weak type of C-
diagonal quasiconvexity, they obtained an existence theorem of solution
for the weak type II generalized vector quasi-equilibrium problem.

In this paper, we shall use the equilibrium existence theorem for 1-
person game due to Yuan [18] as a basic tool for finding a strong solution
of the weak type II (GVQEP). And as an application, we shall give a
generalized quasivariational inequality using the monotone assumption.

2. Preliminaries

Let A be a subset of a topological space X. We shall denote by
24 the family of all subsets of A and by int A the interior of A in
X. If A is a subset of a vector space, we shall denote by co A the
convex hull of A. If A is a nonempty subset of a topological vector
space X and S,T : A — 2% are multifunctions (or correspondences),
then coT, TN S : A — 2% are multifunctions defined by (coT)(z) =
coT(z), (TNS)(x)=T(z)NS(z) for each x € A, respectively.

Let X,Y and Z be real Hausdorff topological vector spaces, and K C
X, DCY. Let C: K — 2% be a multifunction such that for each
z € K, C(z) is a closed convex solid cone in Z with C(z) # Z (i.e.,
int C(z) # 0 for each z € K). Let S : K — 2K, A : K — 2P and
F: K x D x K — 2% be given multifunctions.

In a recent paper [9], Hou et al. introduced the following generalized
vector quasi-equilibrium problems (GVQEP) with multifunctions (S, 4,
F) as follow:

Weak Type I (GVQEP): Find a pair of points z € K and
g € A(Z) such that T € S(Z) and

F(z,g,u)yn—int C(Z)=0 forall ue€ S(Z);

Weak Type II (GVQEP): Find a pair of points z € K and
g € A(z) such that z € S(Z) and

F(%,g,u) € —int C(z) forall ue S(z).

In the above two types of (GVQEP), we may call an Z € K a strong
solution of the problem of the weak type I (resp., weak type II) (GVQEP)
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if § does not depend on T € K and u € S(Z), i.e., there exists T € K
such that F(z,7,u) N —int C(z) = @ (resp., F(Z,§,u) € —int C(z))
for all uw € S(Z) and § € A(Z). On the other hand, an Z € K is said
to be a weak solution of the problem of the weak type I (resp., weak
type II) (GVQEP) if there exists § € A(Z) depending on Z € K such
that F(Z,y,u) N —int C(Z) =0 (resp., F(Z,3,u) € —int C(z)) for all
u € S(Z).

Until now, most of papers deal with these problems in the weak sense,
and existence results need the various conditions of monotonicity and
general convexity assumptions to obtain the solutions of weak sense. In
a recent paper [9], Hou et al. investigated the four types of general-
ized vector quasi-equilibrium problems, and they obtained an existence
theorem of solution in the weak sense for the weak type II generalized
vector quasi-equilibrium problem by using weak type IT C-diagonal qua-
siconvexity; on the other hand, we are now interested in the existence
theorem of solutions in the strong sense of the weak type II (GVQEP)
by using C(z)-quasiconvex-like condition.

For more special forms of vector equilibrium problem and vector
quasi-equilibrium problems about its weak solutions, readers can refer
to [1, 3-5,7-11].

In this paper, we shall prove the existence theorem of strong solutions
of the problem (GVQEP) of the weak type II, which includes many kinds
of vector variational inequalities as special cases. In particular, when the
multifunction F is a single-valued function and the moving cone C(z) is
a constant cone, the problem (GVQEP) of the weak type II reduces to
the generalized vector equilibrium problem studied in [1].

Let K be a nonempty convex subset of a real vector space X. Then a
multifunction F : K x K — 27 is said to be C(z)-quasiconvez-like [11] if
for any z € K, y1,y2 € K and t € [0, 1], we have either F(z,ty; + (1 —
By2) C Fz, 1) - Clx) or F(ztys + (1 - t)y) C F(w,10) - C(2).

When F' is single-valued and the moving cone C(z) is a constant
cone C, the C(x)-quasiconvex-like multifunction reduces to a properly
quasi-convex function defined in [1].

Now we shall need the C(z)-quasiconvex-like condition for two vari-
ables as follows:

DEFINITION 1. Let K be a nonempty convex subset of a real vector
space X, D be a nonempty convex subset of a real vector space Y, and C
a multifunction of a set K C X into Z such that for any z € K, C(x) is
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a closed convex solid cone in Z with C(z) # Z. Let F: KxDx K — 22
be a multifunction. Then F' is called C(x)-quasiconvez-like on K x D
if for each x € K, (x1,41), (x2,y2) € K x D, and for each t € [0,1], we
have either

F(t(z1,31) + (1~ 1) (w2, 32),2) € Fe1,31,2) — C(a)
or

F(t(z1,y1) + (1 — t)(22,¥2), 2) C F(z2,12,2) — C().

It is well-known that the quasiconvexity for each variable can not
imply the quasiconvexity for two variables simultaneously. In fact, when
F is single-valued and the moving cone C(z) = [0,00) for each z € K,
the following simple example confirms this fact:

ExAaMPLE. If f: K x D — R is a quasiconvex function on K x D,
then it is easy to see that f is a quasiconvex function on K by letting
y1 = Y2 in the definition, and also f is quasiconvex on D. However, the
converse can not be true. In fact, in the case K = D = [0,1], Z = R, and
C(z) = [0,00), we consider a real-valued function f : K x D x K — R
defined by

f(z,y,2) =2y + 2z foreach (z,y,2)€ K x D x K.

Then it is easy to see that f is a quasiconvex function on K and D,
respectively. However, f is not a quasiconvex function on K x D. In
fact, when (21,71) = (0,1), (x2,2) = (1,0), we can see that f(3, $,2) >
f(0,1,2) and f(3,3,2) > f(1,0,2) for all z € [0,1].

Let X,Y be nonempty topological spaces and T : X — 2Y be a
multifunction. A multifunction 7 : X — 2Y is said to be upper semi-
continuous if for each € X and each open set V in Y with T'(z) C V,
there exists an open neighborhood U of # in X such that T(y) C V for
each y € U; and a multifunction T : X — 2Y is said to be lower semicon-
tinuous if for each z € X and each open set V in Y with T(z) NV # 0,
there exists an open neighborhood U of z in X such that T(y) NV # 0
for each y € U. And f is said to be continuous if f is both lower semi-
continuous and upper semicontinuous. It is also known that T : X — 2Y
is lower semicontinuous if and only if for each closed set V in Y, the set
{r e X |T(z) CV}isclosed in X.

A topological space is perfectly normal if it is normal, and if every
open subset is an F,;. Then, by Proposition 3 due to Michael in [12], we
know that every F, subset of a paracompact space is also paracompact.
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The following equilibrium existence theorem for 1-person game is es-
sential in proving our main results, and is the particular case of Theorem
2.4 due to Yuan [18]:

LEMMA 1. Let T'= (X, A, P) be an 1-person game such that

(1) X is a nonempty compact convex subset of a locally convex Haus-
dorff topological vector space E;

(2) the correspondence A : X — 2% is continuous such that for each
z € X, A(z) is nonempty closed convex;

(3) the correspondence P : X — 2% is lower semicontinuous such
that « ¢ coP(x) for each ¢ € X;

(4) the set {z € X | A(z) N coP(z) # 0} is open and paracompact.

Then T has an equilibrium z € X, i.e.,

ze€ A(Z) and A(Z)NP(z)=0.

3. A strong solution of (GVQEP) and its applications

We now prove a new existence theorem for a strong solution for
(GVQEP) of the weak type II as follows:

THEOREM 1. Let X,Y and Z be locally convex real Hausdorff topo-
logical vector spaces, and K be a nonempty compact convex perfectly
normal subset of X, D a nonempty closed convex subset of Y. Let
C : K — 22 be a multifunction such that for any x € K, C(z) is a closed
convex solid cone in Z with C(z) # Z, and let F: K x D x K — 2% be
a multifunction.

Assume that

(1) the multifunction S : K — 2¥ be continuous such that each S(z)
is a nonempty closed convex subset of K;

(2) the multifunction A : K — 2P be lower semicontinuous such that
each A(z) is a nonempty convex subset of D;

(3) foreach z € K, F(z,y,z) € —int C(z) for all y € A(z);

(4) for each v € K, (z,y) — F(z,y,u) is a C(u)-quasiconvex-like
function of (z,y) on K x D;

(5) for each net (o, Yu,24) € K x D x K converging to (Z,7, z), if
F(za, Yo, 2a) € —int C(zy) for each a, then F(Z,5,2) € —int C(2).

Then there exists a strong solution £ € K of the weak type II
(GVQEP) such that & € S(Z) and

F(z,y,2) ¢ —int C(&) for all z € S(&) and y € A(Z).
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- Proof. We first define a multifunction T : K — 2% by, foreachz € K,
T(z):={z' € K|F(2',y,z) C —int C(z) for some y € A(x)}.

Note that T'(z) might be an empty-set. By the assumption (3), it is
easy to see that = ¢ T(z) for each € K. We now show that each T'(z)
is convex. Suppose the contrary, i.e., let x € K be fixed such that there
exist 21,22 € T(z) and T =tz + (1 — t)ze ¢ T'(z) for some t € (0, 1).
Since z1,z9 € T(z), there exist y1,y2 € A(zx), respectively, such that
F(z1,y1,2) C —int C(z) and F(xg,y2,z) C —int C(z). Since A(z)
is convex, ¥ := ty; + (1 — t)y2 € A(z). By the assumption (4), F is a
C(z)-quasiconvex-like function on K x D so that for each ¢ € [0, 1], we
have either

F(t(z1,11) + (1 — t)(x2,42),2) C F(z1,y1,2) — C()
or
F(t(ml’yl) + (1 - t)(mg,yz),.’l,'> C F(1'2a112;33) - C(iL')

Since C(z) is a closed convex solid cone, we have C(z) + int C(z) C
int C(z). Hence, for § € A(z), we have either

F(z,3,2) C F(z1,y1,2) — C(z) C —int C(z) — C(z) C —int C(x)
or

F(Z,y,z) C F(z2,y2,2)—C(z) C —int C(z)+C(z) C —int C(z);
so that in either cases, we have F(Z,y,z) C —int C(z). Hence we have
T =tx1 + (1 — t)z2 € T(z), which is a contradiction.

Next we shall show that the multifunction T : K — 2% has open
lower sections, i.e., T7~(z’) is open in K for each z’ € K. If so, T is
automatically lower semicontinuous by Lemma 5.1 in [17]. First, note
that

T~ Yz') ={z € K|F(z',y,z) C —int C(z) for some y € A(z)}
is open in K
—
K\T ') ={z ¢ K|F(z,y,x) € —int C(x) for all y € A(z)}
is closed in K.

Let W := K \ T7!(2’). In order to show that W is closed in K, it
suffices to show that if (z,) is a net in W converging to Z € K, then
zeW,ie, F(l@',y,Z) € —int C(Z) for all y € A(Z). Suppose the
contrary, i.e., F(z',y,Z) C —int C(z) for some y’ € A(Z). Since A
is lower semicontinuous, and (z,) — Z, ¥’ € A(Z), there exists a net
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Yo € A(zq) such that (yo) — ¢'. Since F(2',ys,2Zq) € —int C(z4) for
each a, by the assumption (5), we have F(z',y/, %) € —int C(Z); which
is a contradiction. Hence, Z € W so that T—(x2’) is open in K for each
z' € K. Therefore, by Lemma 5.1 in [17], T is lower semicontinuous.

Next we shall show that the set {z € K|S(x) N T(z) # 0} is open in
K. As in the previous argument, we shall show that the set W7 := {z €
K|S(z)NT(z) = 0} is closed in K. Let (z,) be a net in W converging
to £ € K. Then, for all 2’ € S(z,), F(2',y,24) € —int C(z4) for all
y € A(z,). We must show that for all x € S(2), F(z,y, %) € —int C(&)
for all y € A(Z). Suppose the contrary, i.e., there exist z” € S(Z),y’ €
A(Z) such that F(z",y’,Z) C —int C(Z). Since S and A are lower semi-
continuous multifunctions, and (z,) — &, there exist two convergent
nets

z!, € S(zq) such that (z},) — z”, and y), € A(z,) such that (y,) — v

Since F(z!,,v.,,2.) € —int C(z,), by the assumption (5) again, we
have F(z",vy',2) € —int C(%); which is a contradiction.

Applying Lemma 1, it remains to show the assumption (4) of Lemma
1. Since K is compact and perfectly normal, {z € K|S(z) N T(z) # 0}
is an open subset of K so that it is an F, subset of a compact set K;
and hence it is a paracompact set. Therefore, the whole assumptions of
Lemma 1 are satisfied so that there exists a solution £ € K such that
z € S(2) and S(2)NT(z) =0, i.e, for all x € S(&), x ¢ T(£). This
implies that F(z,y,2) € —int C(%) for all z € S(&) and y € A(Z). This
completes the proof. J

REMARKS. (i) If K is not assumed to be perfectly normal, we shall
need the following additional assumption to assure the same conclusion:

(5) the set {2/ € S(2')| F(2',y,z) C —int C(z) for some y € A(x)}
is (possibly empty) paracompact.

(ii) Theorem 1 is comparable to Theorem 1 in [7] and Theorem 3.2
in [1], and the assumptions are different from each other. In fact, we
do not need the quasi-completeness of D and upper semicontinuity of
A. However, we do need the lower semicontinuity of A and the perfectly
normality of K, and the quasiconvexity for the counterpart variables of
f. Hence, in some sense, Theorem 1 is a dual vector form of Theorem 1
in [7].

(iii) If F is a single-valued and real-valued upper semicontinous func-
tion and the moving cone C(x) is a constant cone C(z) = [0, o) for each
x € K, then the assumption (5) is automatically satisfied.
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The following result due to Yang-Liu [16] is a useful characterization
of quasiconvexity for real-valued functions:

LEMMA 2. Let X be a nonempty convex set in a locally convex Haus-
dorff topological vector space and f : X — R be a lower semicontinuous
function. If for every x,y € X, there exists t € (0,1) such that

[tz + (1 —t)y) < max{f(x), f(¥)},

then f is a quasiconvex function on X.

Here we note that in Theorem 2.1 in [16], X is assumed to be a
nonempty convex set in R™; however X might be a nonempty convex set
in a locally convex Hausdorff topological vector space without affecting
the conclusion.

As we mentioned before, in the scalar case (Z = R and C(z) =
[0,00) for each z € K), the C(x)-quasiconvex-like condition and the
quasiconvexity are equivalent to each other. Hence the following is a
direct consequence of Lemma 2 :

LEMMA 3. Let K be a nonempty convex subset of a locally convex
Hausdorff topological vector space E and D be a nonempty convex set
of a locally convex Hausdorff topological vector space F. Let f : K X
D — R be a lower semicontinuous function on K x D such that each
(z1,11), (x2,y2) € K x D, there exists a real number t € (0, 1) satisfying
f(t(z1,91) + (1 — t)(z2,92)) < max{f(z1,y1), f(z2,y2)}. Then f is a
quasiconvex function on K x D.

For some applications of (GVQEP) on generalized quasi-variational
inequalities, we shall need a scalarization procedure as in Oettli {13].
Let E be a real Hausdorff topological vector space. We shall denote by
E’ the dual space of E (i.e., the vector space of all continuous linear
functionals on F). We denote the pairing between E’ and E by (w, )
for w € E' and z € E. Let K be a nonempty compact convex set of £
and D be a nonempty convex set of a dual space E'.

Let us introduce some notions. A nonempty subset K x D in E x E’
is called monotone if for each (z1,v1),(22,¥2) € K X D, (y1 — y2,21 —
z2) > 0. And we say that T : K — 2P is a monotone mapping
on K if the graph of T is a monotone subset of E x E’| i.e., for each
y1 € T(x1),y2 € T(z2), we have (y1 — y2,21 — z2) > 0. When
T : K — R is a single-valued and real-valued function, it is easy to see
that T is a monotone mapping if and only if T is nondecreasing. And it
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is also known that the subdifferential df of any proper convex function
f is a monotone mapping.
Let f: K x D x K — R be a real-valued function defined by
f(z,y,u) = (y,z —u) foreach (z,y,u) € K x D x K.

Then, we may call that f is monotone on K x D if for each u €

K, f(a:l,yl,u)+f($2,y2,u) > f(xlﬁy2au)+f(x2,y11u) for all (‘Tlayl)’
(x2,y2) € K x D.

Let K be a nonempty compact convex subset of a real Hausdorff
topological vector space F and D be a nonempty convex subset of a
dual space E’.

Then we can see the following

LEMMA 4. Let u € K be fixed, and f : K x D — R be a real-valued
function defined by  f(x,y,u) := (y,z —u) for each (x,y) € K x D.
Then

K x D C E x E* is monotone <= f is monotone on K x D.

Proof. For each (z1,y1), (x2,¥2) € K x D, we have the following
flxr,y0,u) + f(z2,92,u) — f(21,92,u) — f22,91,0)
= (y1,%1 — u) + (Y2, T2 — u) — (Y1, T2 — u) — (Y2, 71 — u)
= (y1 — y2, 21 — T2).
Therefore, we obtain the conclusion. J

Now, using a scalarization procedure, we can interpret the strong so-
lution £ € K of the problem (GVQEP) in Theorem 1 into the following:

£ € 85(2) and f(&,y,x) >0 forall z € S(&)and ye A(Z)
& $2€8(2) and (y,2—z) > 0 forall z € S(£) and y € A(Z)

< 2€8S() and inf inf (y,2—z) > 0.
z€S(2) ye A(E)

In order to apply Theorem 1 to f, we shall need the following

THEOREM 2. Let K be a nonempty compact convex subset of a real
Hausdorff topological vector space E and D be a nonempty convex sub-
set of a dual space E’. Let f : K x D x K — R be a real-valued function
defined by

flz,y,u) = (y,x —u) foreach (z,y,u) € K x D x K.

If K x D is a monotone subset of E x E’, then f is quasiconvex on
K x D,
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Proof. By Lemma 4, f is monotone on K x D, for each v € K, and
hence we have

(y1,01 ~ u) + (Y2, 22 —u) > (y1, T2 —u) + (Y2, 71 — u)

for all (z1,11), (z2,y2) € K x D. Here, if we let a := (y1,x1 — u),b:=
(y2, 22 —w), ¢ := (y1,T2 —u),d := (Y2, 1 —u), then we have a+b > c+d.
By Lemma 3, in order to prove the quasiconvexity of f on K x D, we
must find a real number ¢ € (0, 1) such that f(t(z1,y1)+(1—t)(z2,32)) <
max{f(z1,y1), f(z2,y2)}. That is, we must find ¢ € (0, 1) satisfying the
quadratic inequality
(%) t*(a+b—c—d) +t(c+d—2b)+b < max{a,b}.

By simple calculations, we can show that there always exists a real
number ¢ € (0, 1) satisfying the quadratic inequality (%) in either case

of iYa+b>c+dor (ii) a + b= c+d. Therefore, f is quasiconvex on
K x D. O

Finally, when F is a single-valued and real-valued continuous func-
tion, as an application of Theorem 1, we can obtain a generalized qua-
sivariational inequality as follows :

THEOREM 3. Let K be a nonempty compact convex subset of a
locally convex real Hausdorff topological vector space E and D be a
nonempty convex subset of a dual space E’. Let S : K — 2% be contin-
uous such that each S(z) is a nonempty closed convex subset of K, and
A : K — 2P be lower semicontinuous such that each A(z) is a nonempty
convex subset of D. Assume that K x D is a monotone subset of E x E'.

Then there exists a solution & € K such that % € S(&) and

inf (y,&~z) > 0 forall z€ 5(%).
YyEA(E)

Proof. We first define a real-valued function f: K x D x K — R by
f(z,y,u) = (y,x —u) foreach (z,y,u) € K x Dx K.

Then, f is clearly continuous on K x D x K, and by Lemma 4, f(-,-,u)

is monotone on K x D for each v € K. Hence, by Theorem 2, f is

quasiconvex on K x D. Also, for each x € K, we have f(z,y,2) =

(y,z —x) = 0 for all y € A(x). Therefore, the whole assumptions of
Theorem 1 are satisfied so that there exists a point £ € K such that

£ € S(z) and f(z,y,2) >0 forall z € S(&)and y € A(Z).

Hence we have inf,caz(y,2 —2z) > 0 forall z € S(Z), which
completes the proof. O
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REMARK. Theorem 3 can be comparable to Theorem 2 of Shih-Tan
[15]. In fact, A need not be monotone but we shall need a monotone
condition for the set K x D.

[11]

(12}
[13]

4]
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