Bull. Korean Math. Soc. 43 (2006), No. 3, pp. 619626

THE GENERAL LINEAR GROUP OVER A RING
JUNCHEOL HAN

ABSTRACT. Let m be any positive integer, R be a ring with iden-
tity, Mm(R) be the matrix ring of all m by m matrices over R
and Gn, (R) be the multiplicative group of all m by m nonsingular
matrices in My, (R). In this paper, the following are investigated:
(1) for any pairwise coprime ideals {I1,I5,...,I,} in a ring R,
M (R/(I1NI2N- - -NIp)) is isomorphic to Muy, (R/I1) X Mm (R/I2) X
<+ X Mm(R/1I4), and so Gm(R/(I1 NIz N---NIy,)) is isomorphic
to Gm(R/I1) X Gm(R/I2) X +++ X G (R/Ip); (2) In particular, if
R is a finite ring with identity, then the order of Gy, (R) can be
computed.

1. Introduction

Throughout this paper all rings are assumed to be rings with identity.
Let I be an ideal in a ring R and a,b € R. Recall that ¢ is said to be
congruent to b modulo I (denoted a = b (mod I)) if a — b € I. Clearly,
the congruence relation is an equivalence relation on R. Two ideals I, 1 '
of R are coprime if I + I' = R. A set of nonzero ideals {I,Ls,..., 1.}

in a ring R is pairwise coprime if I; + Iy, = R for all j,k=1,2,...,n
(J # k).

THEOREM 1.1. (Chinese Remainder Theorem) Let {I1,Is,...,I,}
be pairwise coprime ideals in a ring R. If by,bs,...,b, € R, then there

exists b € R such that b = b;(mod I) (i = 1,2,...,n). Furthermore, b is
uniquely determined up to congruence modulo the ideal LN I3N---N1I,.

Proof. See [1, Theorem 2.25]. O
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COROLLARY 1.2. Let {I1,Is,...,I,} be pairwise coprime ideals in a
ring R. Then R/(I,NIN---NI,) is isomorphic to R/I1 x R/I3X---x R/ I,
as rings.

Proof. See [1, Corollary 2.27). O

REMARK 1. For any pairwise coprime ideals {I;,l2,...,I,} in a
commutative ring R, [ NI, N---NI, =1, - Iy---I,.

Let m be a positive integer and M,,(R) be the matrix ring of all mxm
matrices over a ring R. Consider the following relation =,,, defined on
M,,(R): For any A = [a;;] and B = [b;;] € Mp(R), A =, B(mod I)
(we read this A is congruent to B modulo I) if a;; = b;; (modulo I)
for all 4,7 = 1,2,...,m (i.e,, ai; - by; € I). We can observe that the
congruence relation =,, is an equivalence relation on M,,(R) satisfying
the following properties:

For any A, B,C and D € M,,(R) such that A =,,, B(mod I) and C =,
D(mod I),

1] A+ C =, B+ D(mod I).

[2] AC =, BD(mod I). In particular, A* =,, B*(mod I) for all
positive integers s.

In this paper, we denote G(R) by the multiplicative group of all units
in R and G,,(R) by the multiplicative group of all nonsingular matrices
in M,,(R).

THEOREM 1.3. Let m and n be any positive integers, R be a ring
and {I1,1s,...,I,} be pairwise coprime ideals in a ring R. If A, =
la EJ)], = [a (2)] [a(")] € M,,(R), then there exists A €

M (R) sucb that A Ak(mod Ik) for all k = 1,2,...,n. Furthermore,
A is uniquely determined up to congruence modulo the ideal I; N I3 N

coon T,

1(]), Z(f), ..,afy) € Rforall i,7 = 1,2,...,m, there

exists a;; € R such that a;; = af-;-c) (mod Ix) (k =1,2,...,n) by Theorem
1.1. Let A = [a;;] € M, (R). Then A =, Ag (mod I;)(k =1,2,...,n).
Since a;; is uniquely determined up to congruence modulo the ideal
LnhLn---NI, foralli,j=1,2,...,m, A is also uniquely determined
up to congruence modulo the ideal L NI N---N1,. 4

Proof. Since a

COROLLARY 1.4. Let m and n be any positive integers, R be a ring
and {11, Iy,...,I,} beideals in a ring R. Then there is a monomorphism
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of rings 6 : My, (R/(IhNIzN---N1,)) — My (R/I1) X My, (R/I2) X
- X Mn(R/L,). If {L,I5,...,1,} is pairwise coprime, then 6 is an
isomorphism.

Proof. Consider a map 6y : M, (R) — M (R/I1) X My (R/I3) x

-+ X M (R/I,,) defined by 91([aij]) = ([aij +Il], [aij +IQ], RN [aij -’r—fn])
for all [a;;] € My, (R). It is straightforward to show that 6, is a ring
homomorphism and the kernel of 6; (denoted by ker(61)) is My, (I;NI2N
-++-N1). Since M, (R)/ker(6;) is isomorphic to M,,(R/(IiNIzN---N
In)), the map 0 : Mm(R/(Ilﬂfzm' . -ﬂfn)) - Mm(R/Il) XMm(R/Ig) X
- X M (R/1,) is a monomorphism. Suppose that {I1,ls,...I,} is a
pairwise coprime ideals in a ring R. To show that 6 is an isomorphism,
it is enough to show that € is onto. Let ([agjl-) + 1], [az(.gz.) +1,..., [ag-l) +
I,]) € M (R/I) x My (R/I2) X -+ X Mpn(R/I,) be arbitrary. Then
by Theorem 1.3, there exists [a;;] € M, (R) such that [a;;] = [ag)](mod
Ii) for all k = 1,2,...,n. Thus O(la;;] + LnLn---N1,) = ([az(-;-) +
L), [az(-?) + Ll,..., [az(.;-l) + I,)), and so # is an isomorphism. O

COROLLARY 1.5. Let m and k be any positive integers, Zy be the
ring of integers modulo k. If p}* - p3? - - p2 is the prime factorization
of k, then M,,(Zy) is isomorphic to Mm(Zp;u) X Mm(Zpgz) X o0 X
Mm (Zp;ls )

Proof. Let I; = p;*Z be an ideal of Z, the ring of integers, for all
i =1,2,...,s. Since pj! - ph?---p?s is the prime factorization of k,
the set of ideals {I1,...,I;} is pairwise coprime. Since M,,(Z/I;) is
isomorphic to Mm(Zp:w) foralli=1,2,...,s, My (Z) is isomorphic to
M (Zymi ) X Mipn(Zypa) X «++ X Mp(Zype) by Corollary 1.4. O

COROLLARY 1.6. Let m and n be any positive integers and {I1, I3,
..., In} beidealsin aring R. If{I1, I, ..., I,} is pairwise coprime, then
Gm(R/(Ii NIz N---N1I,)) is isomorphic to Gm(R/I1) X Gm(R/I2) X

-+ X Gm(R/I).

Proof. By Corollary 1.4, M,(R/(I; N I>N---NI,)) is isomorphic
to My (R/I1) X My (R/I3) X -+ x My, (R/I,). Since G (R/(I; N 12N
-+-N I,)), the multiplicative group of M, (R/I;) X My (R/I2) x -+ X
My (R/1), 18 Gu(R/I1) X G (R/I2) X - - - X G (R/I,), G (R/(I1N 12N
---N I,)) is isomorphic to Gp(R/I1) X Gp(R/I2) X - -+ X Gp(R/1,).0
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COROLLARY 1.7. Let m and k be any positive integers, Z;, be the
ring of integers modulo k. If pI* - p3? - - pD= is the prime factorization
of k, then G,,(Zy) is isomorphic to Gm(Zym) X Gm(Zpp2) X -+ X
Gm (Zp;ls ).

Proof. 1t follows from Corollary 1.5 and Corollary 1.6. d

2. The order of G,,(R) when R is a commutative ring

Let R be a finite commutative ring. In this section, we will compute
the order of G,,,(R), the multiplicative group of all nonsingular matrices
in M,,(R) (called the general linear group of degree m over R) for all
positive integers m. We will denote the order of G,,(R) by |G, (R)|. In
[2], the following Theorem has been shown:

THEOREM 2.1. Let R be a finite commutative ring. Then R decom-
poses (up to order of summands) uniquely as a direct product of local
rings. Precisely, R ~ (R/P}) x (R/P) x --- x (R/P?) for some pos-

itive integers n and t, where Py, ..., P, are all distinct prime (equally
maximal) ideals of R.
Proof. See [2, Theorem VI.2]. O

LEMMA 2.2. Let R and S be any two rings. Then My, (R x §) ~
M (R) x My (S).

Proof. Define ¢ : My, (R x S) — Mp,(R) x My (S) by ¢([(aij, bi;)]) =
([ais], [bi5]) for all [(asj,bi)] € Mm(R x S). Then it is straightforward
to show that ¢ is an isomorphism. o

COROLLARY 2.3. Let R be a finite commutative ring such that R ~
(R/PH)yx (R/P%)x---x (R/PL) for some positive integers n and t, where
P, P,..., P, are all distinct prime ideals of R given in Theorem 2.1.
Then G (R) ~ G (R/P}) x G (R/PE) X « -+ x G (R) PE).

Proof. 1t follows from Corollary 1.6 and Lemma, 2.2. d

COROLLARY 2.4. Let R be a finite commutative ring such that R ~
(R/P})x (R/P)x---x(R/P?) for some positive integers n and t, where
P, P, ..., P, are all distinct prime ideals of R given in Theorem 2.1.
Then |Gm(R)| = |Gm(R/PY)| - |Gm(R/F5)| -+ |G (R/P7)I.
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Proof. It follows from Corollary 2.3. a

To compute |G, (R)|, by Corollary 2.4 it is enough to compute |Gy,
(R/P})| for all i = 1,...,n, where P;, P,,..., P, are all distinct prime
(equally maximal) ideals of R given in Theorem 2.1.

THEOREM 2.5. Let R be a commutative ring and m be any positive
integer. Then A € M,,(R) is invertible if and only if | A|, the determinant
of A€ R, is a unit in R.

Proof. See [1, Proposition 3.7). O

LEMMA 2.6. Let R be a commutative ring, P be an ideal of R and
k (k > 2) be a positive integer. Then

(1) the map o : R/P* — R/P*~! defined by o(a + P¥) = a + P¥-1
for all a + P* € R/P* is a natural ring homomorphism.

(2) olc(r/p*), the restriction of ¢ to G(R/P¥), is a group homomor-
phism from G(R/P¥) into G(R/P*~1).

(3) In addition, if R is a local ring with the maximal ideal P, then
O|G(R/P’“) is onto.

Proof. (1) Since P* C P*~1, the map o : R/P¥ — R/P*~1 defined
by o(a + P*¥) = a + P*~1 for all a + P* € G(R/P*) is well-defined.
Clearly, o is a ring homomorphism.

(2) For all @ = a+ P* € G(R/P*), there exists b = b+ P* € G(R/P*)
such that @b =ba = 1 =1+ P*. Thus 1 — ab,1 — ba € P*. Since P* C
P*=11 —ab,1 —ba € P*1 and then a + ph-1 € G(R/P*'). Thus
the map ola(rypr) is well-defined. For all a + P*,c + P* € G(R/P¥),
olar/pe)((a + P*)(c + P*)) = olgmpr(ac + P¥) = ac+ PF! =
(a+ P¥=1)(c+ P*~1). Hence olc(r/pr) is a group homomorphism.

(3) Let @ + P*~! € G(R/P*~') be arbitrary. Then there exists
b+ P! € G(R/P*~1) such that ab+ P*~! = (a + P 1)(b+ P+ 1) =
(b+P*=1)(a+P*1) = ba+P*~! = 14+ P51, Thus 1—ab,1—ba € P*1.
Since (R/P¥)/(P*=1/P*) ~ R/P*~! by the Third Isomorphism Theo-
rem of Rings, without loss of generality we can let (R/P¥)/(Pk=1/P*) =
R/P*1 je., (a4 P*)+ (P*"1/P*) = o(a 4+ P*~1) = ¢ + P*1 for all
a+ P*=1 ¢ R/P*! where ¢ is a natural ring homomorphism given in
(1). Since ab+ P*~! =ba+ P*1 =1+ P*-1 ab— 14+ P* ba—1+P* ¢
Pk=1/pPk and so ab—1,ba —1 € P*~1 C P. Thus ab,ba € 1+ P. Since
R is a local ring with the maximal ideal P, 1+ P C G(R). Therefore,
a € G(R), and 50 a + P* € G(R/P¥). Therefore, o|g(g,pr is onto. O
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THEOREM 2.7. Let R be a finite local commutative ring, P be the
unique maximal ideal of R and k be a positive integer. Then

(1) there exists a normal subgroup N of G,,(R/P*) such that G,(R/
P*)/N ~ G,.(R/P*1).

(2) |Gm(R/P¥)| = (|PF=1|/|P*|Y™" - |Gm(R/P*~1)| for all positive
integer m.

(3) |Gm(R/P*)| = (|[P/P¥|)™ - |Gm(R/P)| for all positive integer
m, where |Gm(R/P)| = (|B/P|™ — 1)(|R/P|™ — |R/P|)--- (IR/P|™ —
|R/P™).

Proof. (1) Consider the map 6 : G (R/P*) — Gn(R/P*1) de-
fined by 0([a;; + P*]) = [o(a;; + P*)] = la;; + P*1 for all [a;; +
Pk € Gn(R/PF*), where o|e(r Py is a group homomorphism given in
Lemma 2.6. The map 8 is well-defined. Indeed, for all A = [a;; + P*] €
Gm(R/P*), |A| € G(R/P*) by Theorem 2.5, and also |A| € G(R/P*~1).
It is easy to show that # is a group homorphism. Next, we will show
that 6 is onto. Let B = (b;; + p*~1) € G (R/P*~1) be arbitrary. By
Theorem 2.5, |B| € G(R/P*~'), where |B| is the determinant of B.
By Lemma 2.6, there exists b;; + P* € R/P* such that o(b;; + P*) =
bij + Pl for all 4,5 = 1,...,m. Let By = [b; + P¥] € M,,(R/P*).
Since o(|Bo|) = |B| and |B| € G(R/P*™1), |Bo| € G(R/P*) and so
By € Gn(R/P*1). Thus 6(By) = B and so 6 is onto. Let N =
Ker(6). By the First Isomorphism Theorem of Groups, G,,,(R/P*)/N ~
Gm(R/PE1).

(2) We can note that ker(d) = {[a;; + P*] € G (R/P*) 1 a;; € 1 +
Pk=1 a5 € PF=1(i,5=1,...,m,i # j)}. Hence the order of Ker(8) can
be computed by [Ker(8)| = (|[P*=1/P¥))™" = (|PE~1|/| PE|y™". By (1),
the order of G,,(R/P¥) can be computed by |G,.(R/P¥)| = |Ker(6)| -
(G (R/P*1)| = (lPk"l(/|Pk()m2~|Gm(R/Pk‘1)| for all positive integer
m.

(3) By (2) and mathematical induction on &, we can compute |G, (R/
P¥)| = (|P/P¥|)™ .|Gpm(R/P)|. Since R/P is a finite field, by [2 , Theo-
rem VIIL19], |G (R/P)| = (|R/P|"=1)(|[R/P["~|R/P|)--- (IR/P|" -
|R/P|™~1). Hence we have the result. 0O

COROLLARY 2.8. Let p be a prime integer, k and m be any positive
integers and Z,« be the ring of integers modulo p*. Then |Gy (Z,)| =

P NG (Zge—1)| = - - - = p*=V™ |G,y (Z,)], where |G (Zp)) = (p™ —
D™ —-p)--- (@™ —p™ ).
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Proof. Since Z, is a finite local commutative ring and P = pZ, is
the unique maximal ideal of Z,, we have the result by Theorem 2.7.0J

COROLLARY 2.9. Let m and k be any positive integers. If pi* -
py? -+ - p is the prime factorization of k, then the order of G,,(Zy) can

be computed by |G (Zy)| = [Gm(Z,yz: )|+ [Gin(Zyz) -+ Gon(Zyzo ).
Proof. 1t follows from Corollary 1.7 and Corollary 2.8. O

3. The order of G,,(R) when R is a noncommutative ring

Let R be a finite (not necessary commutative) ring and J(R) be the
Jacobson radical of R. In this section, we will also compute |G, (R)|,
the order of G, (R), for all positive integers m. By the Wedderburn-
Artin Theorem, M,,(R)/J (M, (R)) = &F_, M;(F;), where M;(F;) is the
full matrix ring of all n; by n; matrices over a finite field F; for each
i=1,2,...,n and for some positive integer n,;.

LEMMA 3.1. Let R be a ring and G(R) be the group of all units in
R. Then G(R)/(1+ J(R)) = G(R/J(R)).

Proof. Note that the map ¢ : G(R) — G(R/J(R)) defined by ¢(g) =
g + J(R) for all ¢ € G(R) is epimorphism and ker(¢) = 1+ J(R).
Hence we have G(R)/(1+J(R)) = G(R/J(R)) by the First Fundamental
Homomorphism Theorem of groups. O

COROLLARY 3.2. Let R be a finite (not necessary commutative) ring
such that M,,(R)/J(Mmn(R)) = &}, M,(F;), where M;(F;) is the full
matrix ring of all n; x n; matrices over a finite field F; for each i =
1,2,...,n and for some positive integer n;. Then |G, (R)| = IJ(R)]m2 .
[T, |Gi(Fy)|, where G;(F;) is the group of all nonsingular matrices in
M;(F;)) foralli=1,...,n

Proof. Since My (R)/J(Mm(R)) = Mm(R/J(R)), Mn(R/J(R)) =
@ M;(F;) and so G, (R/J(R)) = &l ,G;(F;). Since J(M,(R)) =
M,.(J(R)) and |1 + J(My,(R))| = ]J( M,.(R))|, by Lemma 3.1 we have
G (R)| = [1+J(Man(R)|-[Tiy |Go(F3)| = [T (M (R))| - TTis |Gi(F)]
= [Mm(J(R)| - TTizy 1Gi(F)] = |J( 1™ Ty |Ga(F). a

COROLLARY 3.3. Let R be a finite (not necessary commutative) local
ring. Then |G (R)| = [J(R)|™ - |Gm(R/J(R))]-
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Proof. By Lemma 3.1, G, (R)/(14+J (M (R)) = Gm(R/J(R)). Hen-
ce |Gm(R)| = |J(R)|™ - |Gm(R/J(R))| by the similar argument given
in the proof of Corollary 3.2. a

REMARK 2. Let R be a finite commutative local ring. Since the
unique maximal ideal of R is the Jacobson radical J of R and J* = (0)
for some positive integer k, by Theorem 2.6 |G, (R)| = |Gm(R/J*)| =
(|J/J*)™ |G (R/ )| = |JI™ - |Gm(R/J)| for all positive integer m.
Even though R is not commutative, |G (R)| = |J|™" - |Gm(R/J)| holds
by Corollary 3.3.
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