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A BMO TYPE CHARACTERIZATION OF
WEIGHTED LIPSCHITZ FUNCTIONS IN
TERMS OF THE BEREZIN TRANSFORM

HonG RAE CHO AND YEOUNG-TAE SEO

ABSTRACT. The Berezin transform is the analogue of the Poisson
transform in the Bergman spaces. Dyakonov characterize the holo-
morphic weighted Lipschitz function in the unit disk in terms of
the Poisson integral. In this paper, we characterize the harmonic
weighted Lipschitz function in terms of the Berezin transform in-
stead of the Poisson integral.

1. Introduction

A continuous function w : (0,00) — R with lmsup, o+ w(t) = 0
will be called a modulus of continuity, if w(t) is non-negative and non-
decreasing. If, in addition, there is a constant C(w) > 0 such that

/Ot f(_slds + t/to<> w_s(z'ﬂds < C(w)w(t),

)

where 0 < t < 1, then we say that it is regular. Given a modulus of
continuity w and E C R, we define the weighted Lipschitz space by

Ao(B) ={J: [f(@)] £ M, |f(z) = ()| < Mw(lz - yl), z,y € B}

with norm the smallest M. Weighted Lipschitz spaces have been studied
by many authors (see [5, 6, 8, 9, 10, 12, 13], and references in their
papers).

Let D be the unit disk {z € C: |2 <1} and T={z € C: |z| = 1}
its boundary in [8], Dyakonov proved the following,.

Received April 26, 2005.

2000 Mathematics Subject Classification: 31A05, 31A10.

Key words and phrases: weighted Lipschitz space of harmonic functions, Berezin
transform, a regular modulus of continuity.

This work was supported by Korea Research Foundation Grant (KRF-2004-002-
C00013).



420 Hong Rae Cho and Yeoung-Tae Seo

THEOREM 1. Let f be a holomorphic function on D that is continuous
up to T. If both w and w? are regular, then

ca) ~ 500 S PTG = L2

Here P is the Poisson integral operator defined by
1|z

Py(z) = /PQ(C)[“C—_—Z—‘Z‘dU(C); z €D,
and by
Pg(() =g(Q), CeT.

For every function h € L'(D, dA), we define

(1 -2
where dA is the normalized area measure on D. The operator B will be
called the Berezin transform. It is remarkable that h € L'(D,dA) is
harmonic if and only if Bh = A (see (1]).

In this paper, we prove the Berezin transform version of Theorem 1
- as following.

THEOREM 2. Let w be a regular modulus of continuity. Let h be
harmonic in D. Consider the equalities

e
walh) = s | e ona]|

My(h) = sup ————B(|h — h(z)[)(2),
z€D w(l ‘Z‘)
My(h) = sup ———— [B(A)(z) - [(BA)()[2]"/2.

2D wW(l — |z)
(i) Let h € LY*(D). If h is harmonic in D, then we have
Mo(h) ~ My (h).
(ii) Let h € L?(D). If h is harmonic in D, then we have
Mo(h) ~ Ma(h).
Let w be a regular modulus of continuity. By the same argument as

the proof of Hardy-Littlewood lemma for harmonic Lipschitz functions, .
we can prove that

(1) 17lla, ) ~ S%plhl + Mo(f)
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for functions h harmonic in D. By (1) and Theorem 2, we have the -
following.

COROLLARY 3. Let w be a regular modulus of continuity. Let h be
harmonic in D.

(i) If h € L(D), then we have
1Alla, () ~ sup |h| 4+ Mi(h).
zeD

(ii) If h € L?(D), then we have

Al 4 D) ~ sup {h| + Ma(h).

The Berezin transform was introduced by Berezin in [3] and [4] and
most applications of the Berezin transform so far have been in study of
Hankel and Toeplitz operators (see [16]). The characterization of the
BMO function in the Bergman metric by the Berezin transform was
begun by Zhu in his thesis [15] and then developed by Békollé, Berger,
Coburn, and Zhu in [2]. We state the results in Section 2. Their results
motivated the authors to consider the characterization of the harmonic
Lipschitz function in terms of the Berezin transform.

2. Preliminaries

LEMMA 4. Let 2 be an open subset in RY. Let ¢ be a line segment
lying entirely in Q2. Suppose that f : Q! — R is continuous and

o g @) = £0)]

=0, foreach =xg€l.
T—0 |z — ¢

Then f is constant on £.

PRrROOF. Let a,b € Qand £ = {ta+ (1 —t)b: 0 <t < 1}. Suppose
that f is not constant on £. Then there are t1,t2 € [0, 1] such that

flag) = f(tra+ (1 = 11)b) < f(taa + (1 —t2)b) = f(bo)-

We may assume that t; < to. We choose a line L with slope o > 0
separating these two points (ao, f(ao)), (bo, f(bo)) in the section {(x, s) :
zel,se R} Let '

to = sup{t: (ta+ (1 — )b, f(ta + (1 — t)b)) € L}.
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Then for ) < t < 1 the point (ta + (1 —t)b, f(ta + (1 — t)b) lies above
L. Thus we have
LAt (1= ) — f(toat (1~ t0)0)

>a>0.
t_,ta' t(t — to)a_+ (t - tg)bl -

This is a contradiction. O
COROLLARY 5. Let Q be a connected open subset in RY. If

lim inf M =

0, foreach xg€ Q,
z—x0 |z — zo]

then f is constant on 2.

PROOF. Let a,b € Q. Since 1 is connected, a and & can be joined by
a polygonal curve lying entirely in Q. By Lemma 4, f(a) = f(b). |

PROPOSITION 6. Let w be a modulus of continuity. Let €2 be a con-
nected open subset in RY. If liminf, o+ (w(t)/t) = 0, then A,(Q) =
{constants}.

ProoF. We have

fe+y) = f@ o owlly)

lim inf < nf ——= =0, foreach z¢€ .
y—0 ‘ ‘y[ y—0 Iy’
By Corollary 5, we get the result. O

LEMMA 7. Let w be a regular modulus of continuity. There is C' > 0
such that
t
©0) oo o <
T 2
PROOF. Since w is non-decreasing, for ¢t < 7, we have
2T o0
olr) 80 g [T [y, < 400
T (21)? , 82 . 82 t
d

REMARK 1. By Lemma 7, if w is regular, then w(t)/t is bounded
below and so it excludes w(t) = t* for a > 1.

COROLLARY 8. Let w be a regular modulus of continuity. Let M > 1.
Let C be the constant in Lemma 7. Then we get

w(Mt) < CMuw(t) forall t>0.
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3. BMO in the Bergman metric

The Bergman metric on D, also called the hyperbolic metric or the
Poincaré metric, is given by
L+ |z (w)]

, z,we€D.
1 — |, (w)]

Blz,w) = 5log

For any z € D and r > 0, let
D(z,r) ={w e D: p(z,w) <r}

be the Bergman metric disk with center z and radius r.
Given a function h € L'(D), we define an averaging function h(2)
on D as follows:
~ 1
he(2) = ——— h(w)dA(w), ze€D.
i ’D(z7 T)’ D(z,r)

For h € L?(D), we define the mean oscillation of h at z in the Bergman
metric to be

. 1/2
MO (h)(2) = (m /D(Z’T) |h(w) -ilr(z)|2dA(w)> :

Let BMO, = BMO,(D) denote the space of all integrable functions h
such that

|2l = sup{MO,(h)(z) : z € D} < +00.
In fact, BMO, is independent of r and can be described in terms of the
Berezin transform.

THEOREM 9 ([2], [11], [16]). Suppose 0 < r < +oo and that the
function h is locally square-integrable in D. Then h € BMO, if and
only if h € L*(D),

S.ug[B(\hl2)(Z) ~ [Bh(z)!]"/% < +oo.

4. Proof of Theorem 2
LeMmMA 10 ([7]). Let 1 < p < oo. Then

/ IhPdA < / (1~ |2)P|Vh(z) PdA + [h(O)?
D D

for functions h harmonic on D.
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LEMMA 11. Let 1 < p < co. Let h € LP(D) be harmonic in D. Then
IVAO)P S [ 3(0) = hO)PAAQ).
PrOOF. Let x : C — R be a cut-off function satisfying:
x€C5’, x>00nD, x(2)=x(lz]), suppxCD, /Ddi =1.
For € > 0, define

Xe(2) = ;2)( (f) and | D(z) ={¢: |z —¢| < €}

Since h is harmonic, we have
h(z) = h(0) = [ (A(0) - hO))xelz — )dA().
¢€D¢(z)

It follows that

VHE < s [Vxde - O) Ih(¢) — h(0)|dA(Q)
ge < ¢eD(z)
<1 / I1(C) — B(O)|A(C).

Thus we have

VROV S 5 [ WO~ hOPA()
u

LEMMA 12. Let w be a regular modulus of continuity. Then we have

w(l — |wl) w w(l—|z])
/D———_ dA(w) < 2L =2

|1 — zw|? 1— 2|

PROOF. By the polar coordinate and the inequality in [14, Proposi-
tion 1.4.10], we have

w(l = |w|) |w| w(l—r)
/ |1—zwl3 / / |1—rzC|3 (Ordr
w(l—r)
< — 7
<)) o
Note that 1 —r|z] = (1 —7r) 4+ (1 —|2]) — (1 — |2])(1 — 7). Thus we have

Dw-r) w(s)
/0 (1=rz)? / =D - (A= JsP ™
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by putting 1 —r = s. We decompose the integral by two parts as
following

1 w(s) ]
/0 s (= 1a) — (= D"
112 w(s)
/ /1|z,s+1—|z|> eI
For the first part we have
1 wls) )
/o [s+<1—|z1>~(1—|z|>s]2d55/ PRE R

~1_|z|/1 IZIwS)

<_1;li
~o1— g

Now for the second part we have

1 w(s) el el
/1_,z| B+ A—T2) — A= TeDa" S/Hz. PR

We use the regular condition of w at the last step of estimates for two
parts of the integral. Thus we complete the proof. O

For any z € D, let ¢, be the Mobius transformation on D defined by

zZ—=w

e (w) = , z,w€D.

1—zw
Then the Moébius map ¢, has the following properties:

—(1 -2

QO;('LU) = (1 _ Zw)z = —kZ(w)a

(1= JwP)(1 =)

(1— |wl2)kz(w) =1- |‘P2(w)|2 = 11— zw[?

The real Jacobian determinant of ¢, at w is

detage() = L)l = et = TELE
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PROOF OF THEOREM 2. (i) By the change of variable, we have that
B(h — h(=)])(2) = /D Ih(w) — h(2)|B(z, w)dA(w)
- /D (0 ) (w) ~ h(2)|dA(w).

By Lemma 10, we have
L hogw) = r@laa 5 [ (1= w®iTihe pw)da
We note that |

[V(how,)(w) < |[Vh(p,(w)lk-(w) and (1—|w|*)k.(w) = 1-|p.(w)[*
Thus it follows that

/ (1~ [wP)IV(h o o:) (w)|dA < / (1= [¢[2) VRO k=(O)1PdA.
D D
By Lemma 12, we have

[ @ = KPRk P

(1 —d] 1 [ w(d =) —|z))?
@ B w(l—{d)wh( ) /D nozE - A©
e [ E0=lD
< Sup | (1—ICI)|V (¢ )l (1 -1z BT dA(C)
[ (- L
s s o=y Vo]t =

Then, from (2), it follows that

MBG (-l
o 180 = AeIB A 5 sup | G ESITHO)].

Thus we have
M (h) S Mo(h).

For p =1 we replace h by ho ¢, in Lemma 11. We have
(1= EIVAE S [ (o o)) - (2)ldAw)
= [ IO — hIB(z OdAC).
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Thus we have

(-2

and hence My(f) S M1(f).
(ii) For h € L?(D), as in the proof of (i), we have

B(A)(2) — |(Bh) (2 / (o p:)(1) ~ h(2) PdA(w)

1

s [ waora- 1o R aaw)
Thus it follows that
L B - APTY2 < g [LL= 1D
STy B0 — ER R < sup | =R wno)

and hence My(h) S My(h).
For p = 2 we replace h by h o, in Lemma 11. Then we have

(1= 2’| VA(=)* < /D |R(C) — h(2)]B(z, ¢)dA(C)
= B(|hf*)(2) — |(BR)(2)[*

and so that

(1 —1=]) 2 1 2y(,) — 212142
ST VRN S sy [BURP)G) ~ 1BR)()P] .

Thus it follows that My(h) < Ma(h). O
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