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HYPONORMAL WEIGHTED SHIFT OPERATORS AND
TRUNCATED COMPLEX MOMENT PROBLEMS

CHuNJI L1

ABSTRACT. In this paper, we present some recent developments
on hyponormal operator theory and truncated Curto-Fialkow and
Embry complex moment problems.

1. Hyponormal operators

1.1. Definitions

Let 'H be a separable, infinite dimensional, complex Hilbert space and
let £L(H) denote the algebra of all bounded linear operators on H. An
operator T' € L(H) is said to be normal if T*T = TT*, hyponormal if
T*T > TT*, and subnormal if T = N|y, where N is normal on some
Hilbert space K 2 H. If T + MT? + --- + A\T* is hyponormal for
every \; € C,i = 1,...,k, then T is said to be weakly k-hyponormal.
In particular, the weakly 2-hyponormal is often said to be quadratically
hyponormal. 1t is well known that normal = subnormal = hyponormal,
with converses false.

For A,B € L(H), let [A,B] = AB — BA. We say that an n-tuple
T = (T1,...,T,) of operators on L(H) is hyponormal if the operator
matrix ([T}, T;])7;=; is positive on the direct sum of n copies of 1. For
k>1and T € L(H), T is k-hyponormal if (I, T, ..., T*) is hyponormal.
The Bram-Halmos characterization of subnormality may be described
as follows: T' € L(H) is subnormal if and only if T is k-hyponormal for
every k > 1.

Let {e,}32, be the canonical orthonormal basis for (?(Z.), and a =
{an}22, be a bounded sequence of positive numbers. Let W, be the
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unilateral weighted shift defined on 1?(Zy) by Wae, := aneny1, ¥n > 0.
The numbers

Yo:=1, m :=ag, Yo 1= aga%,..., Yn ::agu-a%_l,...
are called the moments of W,. It is well known that W, is hyponormal
if and only if a, < ant1(Yn > 0).
A weighted shift W, is said to be recursively generated if there exist
the smallest number 7 > 1 and ¢;(i = 0,...,7 — 1) € R such that
Yn = Pr-1Y-1 -+ + PoYn—r (n 2 1), equivalently,

ai=¢r_1+¢;‘2+m+ - ”’02 (n>r—1).
Q1 Qp 1 0y v

We call r the rank of v. In addition, a weighted shift W, is non-
recursively generated if it is not recursively generated. Note that a
subnormal weighted shift is recursively generated if and only if the cor-
responding probability measure has finite support ([20, P.6]).

1.2. Backward extension problem

Let z > 0 and a(z) : z, a, a1, ... be an augmented weight sequence.
In [4], Curto-Fialkow introduced a backward extension W ;) of the
weighted shift W, and described

HE(a(z),q) = {z € Ry : Wy is ¢-hyponormal}

when W, is k-hyponormal and 1 < ¢ < k. This description was called
backward extension problem of W, with a variable x as initial weight.

In particular, it follows from [2] that if a(z) : z, \/g, \/g , \@, ..., then
there exists a sequence {A;}32; of positive numbers with lim A, = %
such that Ay > Agy1 (K > 1) and HE(a(z),k) = (0, A\g], where A\; =
\/g, Ap=2,..., and Wa(z) is subnormal if and only if 0 < x < \/g In
(11], Jung and Li obtained a formula to describe HE(a(x), q), when W,

is subnormal.
For the moment sequence {v,}5%, of W, we let

Yi Yi+1 o Yitg
o Yi+1l  Yit2 o Yitj+1
A(i,5) = | . : o
Yi+y  Yiti+l o Vit2j

If a subnormal weighted shift W, is recursively generated and rank v =
r, then det A(i,r — 1) # 0 and det A(i,j) = 0 for any ¢ > 0, j > r. Note
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that if a subnormal weighted shift W,, is non-recursively generated, then
det A(i,7) # 0 for any positive integers ¢ and j([5]).

Let a:op < a1 <ag < -+ < ap < -+ be a bounded sequence of
positive numbers. Let z > 0 and let a(z) : z, ag, 01, . . . be an augmented
weight sequence. Assume that W, is non-recursively generated subnor-
mal weighted shift. For brevity, let us put t := Flz Then it follows from
[2, Theorem 4] that W) is k-hyponormal if and only if

i Yo M T Ye-1

Yo M2 Yk
Di(t):= | . . . .

Ye—1 Ve Ykl o Y2k—1

is nonnegative. Note that dj(t) := det Di(t) is the polynomial of ¢
with degree 1. Since W, is non-recursively generated, the coefficient
det A(1,k — 1) of ¢ in the polynomial dj(t) is nonzero. Hence di(t) has
the unique zero. In fact, det A(1,k — 1) > 0, since W, is subnormal.

THEOREM 1.1. ([11, Theorem 2.1]) Let a : ap < a1 < g < -+ <
an < --- be a bounded sequence of positive numbers. Assume that W,
is non-recursively generated subnormal weighted shift. Let ty, := t()
be the unique zero of det Di(t). Then

- [det A0, k))?
tk+1(a) = tk(a) det A(1,k — 1) - det A(l, k)’

forallk=1,2,....

Given any non-recursively generated subnormal weighted shift W,,
by Theorem 1.1, the backward one step extension of W, provides several
examples being distinct the classes of k-hyponormal operators. Indeed,
we may recapture Curto’s example [2, Proposition 7] as following.

EXAMPLE 1.2. For z > 0, let W,(;) be the weighted shift (with

n+l
n+2

(n > 1). It follows from [2] that W, is subnormal if and only if 0 <

Bergman tail) whose weight sequence is given by «qg 1= z, ay :=

x < \/g . Since the Berger measure corresponded by W) is not finite,
Wa(x) is not recursively generated Applying Theorem 1.1, we have

:% ly = 97t3“— ty = 25, t5‘—?g,.... Hence)q: %, )\2:
3 x = /& M=/, 0 =1/%, ..., and HE(a,00) = (0,4/1]

In [10], the authors considered backward two and three step extension
problems.
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1.3. On subnormal completion problem

C. Berger’s characterization of subnormality for unilateral weighted
shifts states that W, is subnormal if and only if the sequences {y,}22
can be interpolated by a probability measure y supported on [0, ||W, %],
ie, v, = [t"du(t), for all n > 0 ({1, III. 8.16]). It establishes a con-
nection between probability measure theory and the classical theory of
moments.

J. Stampfli posed the following

SUBNORMAL COMPLETION PROBLEM: Given m > 0 and an initial
segment of positive weights a : «y, . . ., am, seeks necessary and sufficient
conditions for the existence of a subnormal weighted shift W whose first
(m + 1) weights are ag, .. ., .

J. Stampfli solve the problem for m = 2. That is, (ao,al,ag)/\ is
subnormal if and only if 0 < ag < a1 < a2 ([22]).

Curto-Fialkow gives the following result which solves the subnormal
completion problem.

THEOREM 1.3. ([3, Theorem 3.5]) Let o : o, ..., am(m > 0) be an
initial segment of positive weights, and let

m+1 m

The following statements are equivalent:

(1) W4 is a subnormal completion of «;

(2) a has a recursive subnormal completion;

(3) « has a subnormal completion;

(4) a has an l-hyponormal completion;

(5) A(k) > 0,B(l—=1) >0, and v(k+ 1,k) € Ran A(k) if m is even,
v(k+ 1,k —1) € Ran B(l — 1) if m is odd, where

Yo Y gs! T Y
AG)=1| 1 . , B(G):=1 : :
Yioc Y25 Yi+l o Y2541
i
v(i, )= | :
Yitj

Assume that W, is subnormal. Then

Wy is RG <= supp p is finite.
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* To find g, consider g(t) := t" — (o + - -+ + Yr_1t"1). g has exactly r
zeros, 0 < sp <51 <+ < §py = HWO[H2 Let
-1

£0 1 1 e 1 Yo

£1 S0 81 T Sr—l gj!
-1 -1 -1 '

P it e 8T Yr1

Then 1 := pols, + - + Pr—10s,_;-

2. Curto and Fialkow’s moment problem

2.1. Classical moment problem

Given an infinite sequence of complex numbers v = {9, 71, ..., } and
a subset K C C, the K-power moment problem with data -+ entails
finding a positive Borel measure x4 on C such that

/tidu(t) =7 (i 20) and supp p C K.

For K = [0,+0),K =T :={te C: |t| =1},)K = R and K =
[a,b] (a,b € R), we also said Stieljes, Toeplitz, Hamburger and Hausdorff
moment problem, respectively.

For 0 < m < oo, let v = (70,...,%m) € C™1, and consider the
truncated K -power moment problem

/tidu(t) =~ (0<i<m) and supp p C K.

2.1.1. Solutions of the truncated Stieljes moment problem. Let v =
(Y0, - --,Ym) € C™. The truncated Stieljes moment problem is find-
ing a positive Borel measure p on C such that

(2.1) /tidu(t) =7 (0<i<m) and supp u C [0,+00).

THEOREM 2.1. (Odd Case, [5, Theorem 5.1]) Let v = (Y0, - - -, Yok+1) »
Yo > 0, and let r := rank . The following are equivalent:

(i) The truncated Stieljes moment problem (2.1) is soluble;

(ii) There exists an r-atomic representing measure of ;

(iii) A(k) > 0,B (k) >0 and v(k + 1,k) € Ran A(k).

THEOREM 2.2. (Even Case, [5, Theorem 5.3]) Let v = (7o, ..,%2%k) ,
Yo > 0, and let r := rank ~. The following are equivalent:
(i) The truncated Stieljes moment problem (2.1) is soluble;
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(ii) There exists an r-atomic representing measure of ;

(iii) A(k) >0,B(k—1) >0 and v(k+ 1,k — 1) € Ran B(k —1).
2.1.2. Solutions of the truncated Toeplitz moment problem. Let

v = (V—ka ey Y1705 Y1y k- 77/6) € (CZIH_I with Yo > 0 and Y—-q = ;7]

The truncated Toeplitz moment problem is finding a positive Borel mea-
sure p on C such that

(2.2) /tidu(t) =~ (~k<i<k) and supp u CT.

We obtain the Toeplitz matrix

Yo Ba! e Yr-1 Yr Y%

Y-1 7o o r—2 Yr—1 o YE—1
T,(k)=] m— Y2—r - Y0 9%l U Yetler

Y=r M- 0 V-1 Y0 o Ve—r

Y-k Yi-k - Y=k+r—1 Y—k+r - Y0

THEOREM 2.3. ([5, Theorem 6.12]) Let v = (Y—gy- - - s Y=1,70, V1s- - - »
) € C**! with 49 > 0 and v-; = ¥, and let r := rank . Then
the truncated Toeplitz moment problem (2.2) is soluble if and only if
T, (k) > 0. In this case, u can be chosen to have r atoms.

2.1.3. Solutions of the truncated Hamburger moment problem. Let v =

(Y0,---,Y¥m) € C™F!. The truncated Hamburger moment problem is
finding a positive Borel measure p on C such that
(2.3) /tidu(t) = (0<i<m) and supp u CR.

THEOREM 2.4. (0Odd Case, [5, Theorem 3.1]) Let v = (70, - - -, Yok+1)
€ R?+*2 ~y > 0, and let r := rank . The following are equivalent:

(i) The truncated Stieljes moment problem (2.3) is soluble;

(ii) There exists an r-atomic representing measure of v;

(ili) A(k) > 0 and v(k + 1,k) € Ran A(k).

THEOREM 2.5. (Even Case, [5, Theorem 3.9]) Let v = (7o, ...,72%) ,
Y0 > 0, and let r := rank . The following are equivalent:
(1) The truncated Stieljes moment problem (2.3) is soluble;

(ii) There exists an r-atomic representing measure of -;
(iii) A (k) > 0 and Rank A(k) =r.
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2.1.4. Solutions of the truncated Hausdorff moment problem. Let a < b
and v = (Y0,...,7m) € R™*L. The truncated Hausdorff moment prob-
lem is finding a positive Borel measure y on C such that

(2.4) /tidu(t) =7 (0<i<m) and supp p C [a,b].

THEOREM 2.6. (Odd Case, [5, Theorem 4.1]) Let v = (0, - - - , Yok+1) 5
v > 0, and let r := rank . The following are equivalent:
(1) The truncated Stieljes moment problem (2.4) is soluble;

(ii) There exists an r-atomic representing measure of 7;
(iii) A (k) > 0 and v(k+1,k) € Ran A(k) and bA(k) > B(k) > aA(k).

THEOREM 2.7. (Even Case, [5, Theorem 4.3]) Let v = (Yo, .-, %2k) ;
Yo > 0, and let r := rank . The following are equivalent:

(i) The truncated Stieljes moment problem (2.4) is soluble;

(ii) There exists an r-atomic representing measure of ~;

(iii) A (k) > 0 and there exists yo+1 € R such that v(k+1,k) € Ran
A(k) and bA(k) > B(k) > aA(k).

2.2. Curto and Fialkow’s truncated complex moment prob-
lem

Given a closed subset K C C and a doubly indexed finite sequence
of complex numbers

(2.5) 7 : Y00, Y01, Y105 Y025 V11, V205 - + 1 V0,27 V1, 2015 - - - » ¥2n—1,15 V2n,0

with yo0 > 0, v = %s;. The truncated K complex moment problem
entails finding a positive Borel measure y such that

(2.6) Vij = /Iz‘izjd,u (0<i+j<2n) and supp u C K.

Any sequence v as in (2.5) is a truncated moment sequence and any
measure u as in (2.6) is a representing measure for +y.

For n > 1, let m = m(n) = (n+ 1)(n+ 2)/2. For A € M,,(C) ( the
m x m complex matrices ), we denote the successive rows and columns
according to the following lexicographic-functional ordering : 1,Z,Z,
7% 77,72, ..., Z",...,Z"; rows and columns indexed by 1,7, 22,...,
Z™ are said to be analytic. For 0 <i+j < n,0 <!+ k < n, we denote
the entry in row Z'Z¥, column Z°Z7 by Ag k). For the truncated
moment sequence (2.5), we define M(n)(y) € My (C) as follows : for
0<i+j<n0<l+k<n,

M) k) (ig) = Virthg+i-
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For example, if n = 1, the quadratic moment problem for v : yo0, Y01, Y10,
Y02, Y11, Y20 corresponds to

Yoo o1 Y10
(2.7) MMy =1| v0 71 720
Y01 Yo2  Yi1

The quadratic moment problem was solved completely.

THEOREM 2.8. ([6, Theorem 6.1]) v : Y00, Y01, 710, Y02, V11, Y20 admits
a representing measure if and only if the associated moment matrix M (1)
in (2.7) is positive.

As an application of Theorem 2.8, the author in [14] solved two vari-
able subnormal completion problem.

Let T:={2€C:|z|=1}, D = {z € C: [z] £ 1}, and r = rank
M(1).

THEOREM 2.9. (|7, Theorem 3.1 and Theorem 1.8]) Suppose M (1)
is positive. The following statements are equivalent.

(i) v has a representing measure supported in T (or D );

(ii) v has a r-atomic representing measure supported in T ( or I );

(iii) y11 = 00 ( or 111 < Y00 )-

Let P, C CJz,Zz] denote the complex polynomials in 2,z of total
degree < n. Clearly, dim P, = m. For p € P,

p(z,2) = > agZd,  plzE) = Y @y,
0<i+j<n 0<it+j<n

ﬁ = (a‘OO)aOl,alOv"'?aOn)"-aa'rLO) € (Cm

The basic connection between M (n)(vy) and any representing measure 1
is provided by the identity

/ fadu=(M@)f.9)  (f,9 € Po);

in particular, (M (n)f, f) = [ |f?du > 0, so M(n) > 0.
For k,l € Z,, let A € Mi(C),A = A*,B € M;(C),C € M;(C); we
refer to any matrix of the form

- (A B
=(5 ¢

PROPOSITION 2.10. ([21]) For A > 0, the following are equivalent:
(1) A>0;
(2) There exists Wi 1(C) such that AW = B and C > W*AW.

as an eztension of A.
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The following is the main theorem.

THEOREM 2.11. ([6, Theorem 5.13]) v has a rank M (n)-atomic
representing measure if and only if M (n) admits a flat extension M (n+
1), i.e., rank M(n + 1) = rank M(n).

Let 7 := rank M(n) and let Cps(n) denote the column space of M (n),
so that in Cp(y there is a dependence relation of the form Z" = ¢oI +
c1Z+---+c,_1Z"1. The polynomial 2" —(cg+- - - +¢r—12" ) has r dis-
tinct roots, 2q, .. ., 2r—1, which provide the support for the unique repre-
senting measure for 7(2"*2) corresponding to the flat extension M (n+1).
The densities of this measure, pg, ..., pr—1, are determined by the Van-
dermonde equation

V(ZO; ey Zr—l)(p(): s ,Pr—l)t = (FYOOa cee 770,1‘—1))5-
Then the representing measure is py := Z:;ol pi0z, .
2.3. Solutions of the quartic moment problem

If n = 2, the moment sequence

Y= 7(4) Y00, Y01, Y10, Y02, Y11, Y20, Y03, Y12, Y21, Y30, Y04, Y13, Y22, Y31, Y40

corresponds to

Yoo Yoi Y10 Yo2  Yii Y20
Yo Y11 Y20 Y12 Y21 Y30
M(2) (,y) _ Yo1 Yo2 Y11 Y03 Y12 721
Y20 Y21 Y30 Y22 V31 Y40
Y11 Y12 Y21 13 Y22 Y31
Yo2 Yo3 Y12 Yo4 Vi3 Y22

THE QUARTIC MOMENT PROBLEM. If M(2)(vy) is positive, does
M (2)(7y) have a representing measure ?

First, for the singular (i.e., det M(2) = 0) quartic moment problem,
Curto-Fialkow obtained the following partial solutions.

THEOREM 2.12. ([8, Theorem 1.10)) Suppose M (2)(v) is positive
and recursively generated. Then vy has a rank M (2)-atomic representing
measure in each of the following cases:

(i) {1,Z, Z, Z*} is linearly dependent in Cp(g);

(i) {1,2,Z,2%)} is a basis for Cp(2),2Z € (1,2, Z), and the mo-
ments v;; are all real, with the possible exception of 7y4;

(iii) {1, Z, Z, Z*} is a basis for Cr(2) 27 € (1,2,7), and the reduced
C-block test ¢11 = coo passes;
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(iv) {1,Z,Z,2% Z*} is a basis for CM(Z),ZZ € (1,Z,7), and the
reduced C-block test cy1 = ¢ passes for some choice of 7ys.
The followings are an extension of Theorem 2.12.

THEOREM 2.13. ([13, Theorem 3.2)) If

(i) M(2) is positive,

(i) {1,Z,Z, Z%} is a basis for Cm2)

(iil) ZZ € (1,2, 2),

then M(2) has the unique flat extension M (3).
THEOREM 2.14. ([13, Theorem 3.4]) If

(1) M(2) is positive,

(ii) {1, 2, 2,22 Z*} is a basis for Cpy2),

(i) ZZ €(1,2,2,2%),

then M(2) has the unique flat extension M(3).
The following example is very important.

ExaMPLE 2.15. ([13, Example 2.4]) If the truncated moment se-
quence v of order 4 is given by

~4:1,0,0,0,1,0,1,0,0, 1,1, 1,2 1, 1,

then we have

O -H OO O -
_ oo O =Oo
OO R =OD
~ RPN OO
N ERO O
N = = O~ O

(i) M(2) = 0;

(ii) rank M (2) = 4 and thus M (2) satisfies the property (RG) ;

(iii) v has no representing measure.

The authors [9] and [15] also obtained some results for the singular
quartic moment problem.

THEOREM 2.16. ([9, Theorem 1.3]) Suppose M(2) >0, {1,2,Z,7Z%}
is independent in Cps(3), and Z7Z =A1+BZ+CZ+DZ? D #0. The
following are equivalent:

(i) v admits a 4-atomic ( minimal ) representing measure;

(ii) M(2) admits a flat extension M (3);

(iil) there exists vo3 € C such that 723 = Avyei + Brysa + Cy31 + Dyas.

THEOREM 2.17. ([9, Theorem 4.1]) Suppose M(2) >0, {1,Z2,Z,7Z?,
ZZ} is a basis for C M(2)- 4 admits a 5-atomic (minimal) representing
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measure if and only if there exists 723 € C such that the C-block of
[M(2); B(3) [y23]] satisties C2; = Csa.

THEOREM 2.18. (]9, Theorem 1.5]) Suppose M(2) >0, {1,Z,Z, Z?,
ZZ} is a basis for C M(2)- ~®) admits a representing measure.

For nonsingular quartic moment matrices, if M(2) > 0 then [M(2);
B(2)] is a flat extension of M(2) if and only if the C-block satisfies
c11 = c22 and cz1 = C32.

In [13] the authors obtained the partial solutions.

We consider the case that M (1) = I and 13 = yp3 = 0. Thus M(2)
is of the form

0 1 0
0 0 0
0 0 0
Y22 Y31 Y40
Y13 Yoz Y31
Y04 Y13 722

O, OO O -
OO OO O
SO0 = OO

THEOREM 2.19. ([18, Theorem 4.4]) Let M(2) be a positive and
nonsingular moment matrix as in (2.8) and ci; be the cofactor of the
i-th row j-th column entry of M(2),4,j =1,2,3,4,5,6. Put

a4 = C22C64C65

lcea|?> — |ces|? + cos(cs5 — co6)’
b c22”|ces |

lceal? — |ces]? + cos(css — co6)’
o c22”|css(Jcea)® = 1)

lcga|? — |ces5]|? + ces(css — co6)
If

Sp:={teR" |c<t? c—lalp<t* bt <lalb+c, |alp+c<t?+ bt}
is not empty, then M(2) admits a flat extension M (3).

ExaMmpPLE 2.20. ({18, Example 4.6]) Assume that yo0 = 1,701 =
0,702 = 0,’)/11 = 1,’}/03 = 0,’712 = 0,704 = 0,’713 = 0, and Y22 = 2. Then

100010

010000

001 000O0
M(2) = 000200}

1000 20

0 00O0O0 2
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which is positive and invertible. In fact, by Mathematica, the eigen-
values of M(2) are 1,1,2,2,2(3 — v/5), (3 + v/5). Also a straightfor-
ward calculation gives that a = 0,b = 8 and ¢ = 0, so S; = {0,8}.
Thus by Theorem 2.19, M (2) admits a flat extension M (3). In fact,
by a straightforward calculation, we can obtain a representing measure

B =) o<ics Pidz, Where
20 ~ 0.618034 —0.618034i,  pp ~ 0.315738,

21 ~ —1.61803 — 1.61803i,  p; ~ 0.0175955,
2o & —0.84425 — 0.226216i,  pp ~ 0.315738,

23 = 2.21028 + 0.592242;, p3 &~ 0.0175955,
24~ —0.502242 — 2.21028,  pa ~ 0.0175955,
25 ~ 0.226216 + 0.844251, ps ~ 0.315738.

OPEN PROBLEM. Does arbitrary nonsingular positive quartic mo-
ment matrix M(2) admit a representing measure ?

3. Embry’s moment problem

3.1. The truncated Embry complex moment problem

As a subcollection of the collection in (2.5), we consider
(3.1) v={1}t 0<i+i<m, [i—j[<n)

with v00 > 0, v5i = 7. The truncated Embry K complex moment
problem entails finding a positive Borel measure p such that

(3.2) f)/ijz/zizjdu (0<i+j<2n,li—j <n) and suppu C K.

Any measure y as in (3.2) is a representing measure for 7.

For n € N, let m = m(n) := ([}] + D([2] + 1). We define the
moment matrix E(n) = E(n)(y) in My, (C) as follows: E(n)1)¢5) =
Yiti,j+k- Note that E(n) is a submatrix of M(n), i.e., E(n)ky,6;) =
M(n)(x,0),6,5) when k <l and i <3j.

Basically, the positivity of E(n) is necessary.

THEOREM 3.1. ([12, Proposition 3.10]) Let v = {;;} (0<i+j <
2n, |i — j| < n) be given.

(i) If n is even number, then ~ has a rank F(n)-atomic representing
measure if and only if E(n) > 0 and E(n) admits a flat extension
E(n +2).
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(ii) If n is odd number, then v has a rank E(n)-atomic representing
measure if and only if E(n) > 0 and E(n) admits a flat extension
E(n+1).

3.2. Quadratic Embry moment problem

Let v : 00,701,710, 711 With 0 > 0,710 = Jo1 and 11 € R. The
quadratic moment problem entails finding a positive Borel measure g
supported in the complex plane C such that

g = /zizjdw), O<itj<2 li-jl<1)

As in section 3.1, we can obtain the moment matrix

E(l) = < Yoo Yo1 )

7o Y
Let r = rank E(1). We can obtain the following

THEOREM 3.2. ([17, Theorem 2.1]) The following statements are
equivalent.

(i) v has a representing measure;

(ii) v has an r-atomic representing measure;

(iii) E(1) > 0.

In this case, if r = 1, there exists a unique representing measure

1 = Yoodru; Iif 7 = 2, the 2-atomic representing measures contain a
Yoo
sub-parameter by a circle.

Furthermore, we have

THEOREM 3.3. ([17, Theorem 3.1, Theorem 4.1]) Suppose E(1) is
positive. The following statements are equivalent.

(i) v has a representing measure supported in T ( or D );

(ii) v has an r-atomic representing measure supported in T ( or D );

(iii) y11 = 700 ( or 11 < Y00 )-

3.3. Quartic Embry moment problem

Let v = {'Yij} (0 <i+j5 <4, [i—34] < 2) with g9 > 0, vji = ¥iz. The
quartic Embry moment problem entails finding a positive Borel measure
w such that

%jz'/zizﬂ'du (0<i+j<4,]i-7<2).



446 Chunji Li

We obtain the moment matrix

Yoo Yo1 o2 Y11
E(2) _ Y10 M1 M2 721
Y20 Ye1 Y22 Y31
Y11 Y12 Y13 Y22

Assume that E(2) is positive and let r := rank F(2). Then obviously
1 < r < 4. The singular case is of det E(2) =0, i.e.,, 7 = 1,2 and 3.

3.3.1. The case of r = 1. By a direct computation, we have the follow-
ing proposition.

PROPOSITION 3.4. ([16, Proposition 2.1]) Assume that E(2) > 0 and
r = 1. Then there exists the unique flat extension E(3) of E(2). There-

fore vy admits the unique l-atomic representing measure [ = o001 -
Y00

3.3.2. The case of r = 2. Assume that rank F(2) = 2. Then
Z2=q1+pZ and ZZ=d1+052Z,

for some complex numbers o, 3, ¢/, 8. By a direct computation, we have

o = Y012 — 702711’ _ Joom2 — 710’702’
Y00Y11 — Y10701 Y00Y11 — Y1001

o = . Joira T "h . 8= Yooy21 — V10711
Yo0Yi1 — Y10701 7Y00Y11 — V10701

PROPOSITION 3.5. ([16, Proposition 2.3]) Assume that E(2) > 0
and r = 2. If

amz + Brez = o/v21 + Byae,

then there exists a unique flat extension E(3) of E(2). Therefore, v
admits unique 2-atomic representing measure [t = pod,, + p102,, the two
atoms zg, z1 are the roots of

22 — (a+B2) =0,

and the densities are

01 — Y0021 20700 — 7Yo1
SN 107 A [ Bla (1
zp — 21 2 — 21
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3.3.3. The case of r = 3. For a positive n X n matrix A, let us denote
by [A]i the compression of A to the first & rows and k columns. We
denote by M;; the determinant of the cofactor of E(2) with respect to
(¢,7) and Ay = det([E(2)]q), for d =1,2,3, and 4.

We now assume that rank E(2) = 3. Then there exist ag, a1,a2 in C
such that

(3.3) 27 = apl +a12Z + GQZZ.

In fact,

Ma Mg Mg

- A3 ) 1— A3 s 2 = Ag .

To establish a flat extension E(3), we should choose suitable 7y23. By

(3.3) we have

ag

Z7% = agZ + a1 2% + a2, Z3.
Let us take

723 = apv12 + a1713 + azv14.
Since {1,Z,22%, 23} is linearly dependent, we have Z% = byl + b1 Z +
by Z2, for some b; € C. Then

1 | Y03 701 o2 1 | Y00 703 702
bp = AL | 7o Mz, by = AL |70 msom2
Y23 Y21 Y22 3 Y20 Y23 Y22

1 | Yoo 7Yor 703
bo=—| 70 71 M3
A
Y20 Y21 723
Define 714 := boy11 + b1712 + bam13.

THEOREM 3.6. ([16, Theorem 2.11]) Assume that F(2) is positive
and r = 3. Then v admits a 3-atomic representing measure if and only
if we may take 73 satisfying

boyso + b1ys1 +baysa = agye2 + a1v23 + azya,
boyar +b1va2 + bavas = aoyss + a1v34 + azyss.

By Theorem 3.6, we have the following result.

PROPOSITION 3.7. ([16, Proposition 2.14]) Assume that E(2) > 0
andr =3.If ZZ = 1, then there exists a 3-atomic representing measure
for ~.

OPEN PROBLEM. Assume that E(2) is positive and invertible. Does
there exist any representing measure?

The following result is on the unit circle T.
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THEOREM 3.8. ([19]) If ZZ = 1, then the following statements are
equivalent.

(i) v admits a representing measure on T;

(ii) v admits an r-atomic representing measure on T;

(iii) E(2) > 0 and voo = Y11 = Y22.
OPEN PROBLEM. Discuss the quartic Embry moment problem on
the unit disc D.
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