WEIGHTED COMPOSITION OPERATORS BETWEEN BERGMAN-TYPE SPACES

AJAY K. SHARMA AND SOM DATT SHARMA

ABSTRACT. In this paper, we characterize the boundedness and compactness of weighted composition operators $\psi C_{\varphi} f = \psi f o \varphi$ acting between Bergman-type spaces.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . Denote by $\mathbb{H}(\mathbb{D})$ the space of holomorphic functions on D. A weighted composition operator $\psi C_{\varphi}(f)(z) = \psi(z)f(\varphi(z))$, for all $z \in \mathbb{D}$, where φ and ψ are holomorphic functions defined in \mathbb{D} such that $\varphi(\mathbb{D}) \subset \mathbb{D}$. When $\psi = 1$, we just have the composition operator C_{φ} defined by $C_{\varphi}(f) = f \circ \varphi$ and when $\varphi(z) = z$ we have the multiplication operator M_{ψ} defined by $M_{\psi}(f) = \psi f$. During the last century, composition operators have been studied extensively on spaces of analytic functions with the aim to explore the connection between the behavior of C_{φ} and function theoretic properties of φ . During the past few decades this subject has undergone explosive growth. As a consequence of the Littlewood Subordination principle [10] it is known that every analytic self map φ induces a bounded composition on Hardy and weighted Bergman spaces of the unit disk. However characterizing the compact composition operators acting on Hardy spaces of the disk was a difficult problem. Commendable work in this direction was done by Schwartz [14], Shapiro and Taylor [15], MacCluer and Shapiro [11] and Shapiro [16]. Many other important properties of C_{φ} have also been studied on these spaces. We refer

Received October 29, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B33, 46E10; Secondary 30D55.

Key words and phrases: weighted Bergman spaces, growth spaces, weighted composition operator, composition operator, multiplication operator.

First named author is supported by CSIR-grant (F.No. 9/100(100)2002 EMR-1).

to recent monographs [16] and [4] for an over all view of the whole spectrum of present knowledge concerning composition operators. Weighted composition operators appear naturally in different contexts. For example, Singh and Sharma [19] related the boundedness of composition operators on Hardy space of the upper half plane with the boundedness of weighted composition operators on the Hardy space of the open unit disk \mathbb{D} . Weighted composition operators also played an important role in the study of compact composition operators on Hardy spaces and Bergman spaces of unbounded domains (see for example [12] and [18] for more details.) Isometries in many Banach spaces of analytic functions are just weighted composition operators, for example see [6] and [8].

Recently, several authors have studied weighted composition operators on different spaces of analytic functions. For example, one can refer to [1], [2] and [3] for study of these operators on Hardy spaces, [9] and [22] for disk algebra, [21] and [23] for Bloch-type spaces and [5] and [12] for weighted Bergman spaces. In this paper we characterize boundedness and compactness of weighted composition operators between Bergman-type spaces.

2. Preliminaries

In this section we review the basic concepts of weighted Bergman spaces A^p_{α} and Bergman-type spaces, denoted by $A^{-\alpha}$ and $A^{-\alpha}_0$ which are closely related to the weighted Bergman spaces A^p_{α} and are sometimes called growth spaces. We also collect some essential facts that will be needed throughout the paper.

2.1. Weighted Bergman spaces

Let dA(z) be the area measure on \mathbb{D} normalized so that area of \mathbb{D} is 1. For each $\alpha \in (-1, \infty)$, we set $d\lambda_{\alpha}(z) = (\alpha+1)(1-|z|^2)^{\alpha}dA(z), z \in \mathbb{D}$. Then $d\lambda_{\alpha}$ is a probability measure on \mathbb{D} . For $0 the weighted Bergman space <math>A_{\alpha}^{p}$ is defined as

$$A^p_\alpha = \{ f \in \mathbb{H}(\mathbb{D}) : ||f||_{A^p_\alpha} = \Big(\int_{\mathbb{D}} |f(z)|^p d\lambda_\alpha(z) \Big)^{1/p} < \infty \}.$$

Note that $||f||_{A^p_\alpha}$ is a true norm only if $1 \le p < \infty$ and in this case A^p_α is a Banach space. For $0 , <math>A^p_\alpha$ is a non-locally convex topological vector space and $d(f,g) = ||f-g||_{A^p_\alpha}^p$ is a complete metric for it.

The following lemma tells us how fast an arbitrary function from A^p_{α} grows near the boundary. The growth of functions in the weighted

Bergman spaces is essential in our study. To this end, the following sharp estimate will be useful. (see [7], p. 53.)

LEMMA 2.1. Let $f \in A^p_\alpha$. Then for every z in \mathbb{D} , we have

$$|f(z)| \le \frac{||f||_{A^p_{\alpha}}}{(1-|z|^2)^{(2+\alpha)/p}}$$

with equality if and only if f is a constant multiple of the function

(2.1)
$$k_a(z) = \left(\frac{1 - |z|^2}{(1 - \overline{a}z)^2}\right)^{(2+\alpha)/p}.$$

It can be easily shown that $||k_a||_{A^p_\alpha}^p = 1$. Since polynomials are dense in A^p_α , it is an immediate consequence of Lemma 2.1 that for $f \in A^p_\alpha$,

(2.2)
$$|f(z)| = o\left(\frac{||f||_{A^p_{\alpha}}}{(1-|z|^2)^{(2+\alpha)/p}}\right) \text{ as } |z| \to 1,$$

which means that the boundary growth is not as fast as permitted by Lemma 2.1.

2.2. The Growth Spaces $A^{-\alpha}$ and $A_0^{-\alpha}$

For any $\alpha > 0$, the space $A^{-\alpha}$ consists of analytic functions f in $\mathbb D$ such that

$$||f||_{A^{-\alpha}} = \sup\{(1 - |z|^2)^{\alpha} |f(z)| : z \in \mathbb{D}\} < \infty.$$

Each $A^{-\alpha}$ is a non-separable Banach space with the norm defined above and contains all bounded analytic functions on \mathbb{D} . The closure in $A^{-\alpha}$ of the set of polynomials will be denoted by $A_0^{-\alpha}$, which is a separable Banach space and consists of exactly those functions f in $A^{-\alpha}$ with

$$\lim_{z \to 1^{-}} (1 - |z|^{2})^{\alpha} |f(z)| = 0.$$

For general background on weighted Bergman spaces A_{α}^{p} and Bergmantype spaces, $A^{-\alpha}$ and $A_{0}^{-\alpha}$, one may consult [7] and [24] and the references therein.

3. Weighted composition operators

In this section we study weighted composition operators between Bergman-type spaces. W. Smith in [20] characterized the boundedness and compactness of composition operators between weighted Bergman spaces, whereas S. Ohno, K. Stroethoff and R. Zhao [21] characterized boundedness and compactness of composition operators between weighted Bloch spaces.

THEOREM 3.1. Let $1 \leq p < \infty, -1 < \beta < \infty$ and $\alpha > 0$. Let φ and ψ be holomorphic maps on $\mathbb D$ such that $\varphi(\mathbb D) \subset \mathbb D$. Then the weighted composition operator $\psi C_{\varphi} : A_{\beta}^p \to A^{-\alpha}$ is bounded if and only if

(3.1)
$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} < \infty.$$

PROOF. First suppose that

$$M = \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} < \infty.$$

By Lemma 2.1, we have

$$|f(z)| \le \frac{||f||_{A^p_\beta}}{(1 - |z|^2)^{(2+\beta)/p}}$$

for all $z \in \mathbb{D}$, independent of $f \in A^p_{\beta}$. Thus for $z \in \mathbb{D}$, we get

$$\begin{aligned} ||\psi C_{\varphi} f||_{A^{-\alpha}} &= \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |\psi C_{\varphi} f(z)| \\ &= \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |\psi(z) f(\varphi(z))| \\ &\leq \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} ||f||_{A^p_{\beta}} \\ &= M||f||_{A^p_{\beta}}, \end{aligned}$$

hence $\psi C_{\varphi}: A_{\beta}^p \to A^{-\alpha}$ is bounded. Conversely, suppose $\psi C_{\varphi}: A_{\beta}^p \to A^{-\alpha}$ is bounded. Fix a point z_0 in $\mathbb D$ and let $w = \varphi(z_0)$. Consider the function

$$f_w(z) = \left(\frac{1 - |w|^2}{(1 - \overline{w}z)^2}\right)^{(2+\beta)/p}.$$

Then $||f_w||_{A^p_\beta}=1$. Since $\psi C_\varphi:A^p_\beta\to A^{-\alpha}$ is bounded, there is a constant C such that

$$||\psi C_{\varphi} f_w||_{A^{-\alpha}} \le C||f_w||_{A^p_{\alpha}} = C,$$

hence for each point $z \in \mathbb{D}$ we have

$$|\psi(z)|(1-|z|^2)^{\alpha}|f_w(\varphi(z))| \le C.$$

In particular, when $z = z_0$ we get

$$|\psi(z_0)|(1-|z_0|^2)^{\alpha} \left(\frac{1-|\varphi(z_0)|^2}{(1-|\varphi(z_0)|^2)^2}\right)^{(2+\beta)/p} \le C,$$

whence

$$\frac{(1-|z_0|^2)^{\alpha}|\psi(z_0)|}{(1-|\varphi(z_0)|^2)^{(2+\beta)/p}} \le C.$$

Since $z_0 \in \mathbb{D}$ was arbitrary, the result follows.

COROLLARY 3.2. Let $1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0$ and φ be holomorphic map on $\mathbb D$ such that $\varphi(\mathbb D) \subset \mathbb D$. Then the composition operator $C_{\varphi}: A_{\beta}^p \to A^{-\alpha}$ is bounded if and only if

$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha}}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} < \infty.$$

COROLLARY 3.3. Let $1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0$ and ψ be holomorphic map on \mathbb{D} . Then the multiplication operator $M_{\psi}: A_{\beta}^{p} \to A^{-\alpha}$ is bounded if and only if

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |\psi(z)| < \infty.$$

THEOREM 3.4. Let $1 \leq p < \infty, -1 < \beta < \infty$ and $\alpha > 0$. Let φ and ψ be holomorphic maps on $\mathbb D$ such that $\varphi(\mathbb D) \subset \mathbb D$. Then the weighted composition operator $\psi C_{\varphi} : A_{\beta}^p \to A^{-\alpha}$ is compact if and only if

(3.2)
$$\lim_{r \to 1} \sup_{\{z: |\varphi(z)| > r\}} \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} = 0.$$

PROOF. Let $\{f_n\}$ be a bounded sequence in A^p_{β} that converges to zero uniformly on compact subsets of \mathbb{D} . Let $M = \sup_n ||f_n||_{A^p_{\beta}} < \infty$. Given $\varepsilon > 0$, there exist an r such that if $|\varphi(z)| > r$, then

$$\frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} < \varepsilon.$$

By Lemma 2.1 we have

$$|f_n(z)| \le \frac{||f_n||_{A^p_\beta}}{(1-|z|^2)^{(2+\beta)/p}}.$$

Thus for $z \in \mathbb{D}$, we have

$$(1 - |z|^{2})^{\alpha} |\psi C_{\varphi} f_{n}(z)| = (1 - |z|^{2})^{\alpha} |\psi(z)| f_{n}(\varphi(z))|$$

$$\leq \frac{(1 - |z|^{2})^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^{2})^{(2+\beta)/p}} ||f_{n}||_{A_{\beta}^{p}}$$

$$< \varepsilon M,$$

for all n. On the other hand, since $f_n \to 0$ uniformly on $\{w : |w| \le r\}$, there exist an n_0 such that, if $|\varphi(z)| \le r$ and $n \ge n_0$ then $|f_n(\varphi(z))| < \varepsilon$. Also Theorem 3.1 implies that $\psi \in A^{-\alpha}$. Thus we have

$$N = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |\psi(z)| < \infty$$

and hence

$$(1-|z|^2)^{\alpha}|\psi C_{\varphi}f_n(z)| = (1-|z|^2)^{\alpha}|\psi(z)|f_n(\varphi(z))|$$

$$< N\varepsilon.$$

Conversely, suppose that $\psi C_{\varphi}: A_{\beta}^{p} \to A^{-\alpha}$ is compact and (3.2) does not holds. Then there exist a positive number δ and a sequence $\{z_{n}\}$ in \mathbb{D} such that $|\varphi(z_{n})| \to 1$ and

$$\frac{(1-|z_n|^2)^{\alpha}|\psi(z_n)|}{(1-|\varphi(z_n)|^2)^{(2+\beta)/p}} \ge \delta,$$

for all n. For each n, let $w_n = \varphi(z_n)$ and consider the function f_n as

$$f_n(z) = \left(\frac{1-|w_n|^2}{(1-\overline{w}_n z)^2}\right)^{(2+eta)/p}, \ z \in \mathbb{D}.$$

Then f_n is norm bounded and $f_n \to 0$ uniformly on compact subsets of \mathbb{D} , it follows that a subsequence of $\{\psi C_{\varphi} f_n\}$ tends to 0 in $A^{-\alpha}$. On the other hand,

$$||\psi C_{\varphi} f_{n}||_{A^{-\alpha}} \geq (1 - |z_{n}|^{2})^{\alpha} |\psi C_{\varphi} f_{n}(z_{n})|$$

$$= (1 - |z_{n}|^{2})^{\alpha} |\psi(z_{n}) f_{n}(\varphi(z_{n}))|$$

$$= \frac{(1 - |z_{n}|^{2})^{\alpha} |\psi(z_{n})|}{(1 - |\varphi(z_{n})|^{2})^{(2+\beta)/p}}$$

$$\geq \delta,$$

which is absurd. Hence we are done.

COROLLARY 3.5. Let $1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0$ and φ be holomorphic map on $\mathbb D$ such that $\varphi(\mathbb D) \subset \mathbb D$. Then the composition operator $C_{\varphi}: A_{\beta}^p \to A^{-\alpha}$ is compact if and only if

$$\lim_{r \to 1} \sup_{\{z: |\varphi(z)| > r\}} \frac{(1 - |z|^2)^{\alpha}}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} = 0.$$

COROLLARY 3.6. Let $1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0$ and ψ be holomorphic map on \mathbb{D} . Then the multiplication operator $M_{\psi}: A_{\beta}^{p} \to$

 $A^{-\alpha}$ is compact if and only if

$$\lim_{r \to 1} \sup_{|z| > r} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |\psi(z)| = 0.$$

THEOREM 3.7. Let $1 \leq p < \infty, -1 < \beta < \infty$ and $\alpha > 0$ and φ and ψ be holomorphic maps on $\mathbb D$ such that $\varphi(\mathbb D) \subset \mathbb D$. Then the weighted composition operator $\psi C_{\varphi} : A_{\beta}^p \to A_0^{-\alpha}$ is bounded if and only if

(i)
$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} < \infty$$

(ii) $\psi \in A_0^{-\alpha}$.

PROOF. First, suppose $\psi C_{\varphi}: A_{\beta}^{p} \to A_{0}^{-\alpha}$ is bounded. Then (i) can be proved exactly in the same way as in the proof of Theorem 3.1. By taking f(z) = c, we get $\psi \in A_{0}^{-\alpha}$. Conversely suppose that (i) and (ii) are satisfied. Let $\varepsilon > 0$ and $f \in A_{\beta}^{p}$. Then by (2.2)

$$|f(z)| = o\Big(rac{||f||_{A^p_{eta}}}{(1 - |z|^2)^{(2+eta)/p}}\Big) ext{ as } |z| o 1$$

and so by (i) there is $\delta_1 \in (0,1)$ such that for $z \in \mathbb{D}$ with $|z| > \delta_1$, we can find a constant $C_1 > 0$ such that

$$(1 - |z|^2)^{\alpha} |\psi(z)f(\varphi(z))| < \varepsilon \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} ||f||_{A^p_{\beta}}$$

$$(3.3) < C_1 \varepsilon.$$

On the other hand since by (ii) $\psi \in A_0^{-\alpha}$, for the above $\varepsilon > 0$, there is $\delta_2 \in (0,1)$ such that $|z| > \delta_2$, implies

$$(1-|z|^2)^{\alpha}|\psi(z)|<\varepsilon.$$

Thus for $|\varphi(z)| \leq \delta_1$, if $|z| > \delta_2$, we have a constant $C_2 > 0$ such that

$$(1 - |z|^2)^{\alpha} |\psi(z)f(\varphi(z))| \le \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - \delta_1^2)^{(2+\beta)/p}} ||f||_{A^p_\beta}$$

$$(3.4) \leq C_2 \varepsilon.$$

By combining (3.3) and (3.4), we see that whenever $|z| > \delta_2$ we have

$$(1 - |z|^2)^{\alpha} |\psi(z)f(\varphi(z))| \le \max(C_1, C_2)\varepsilon.$$

This means that

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |\psi C_{\varphi} f(z)| = 0.$$

Thus $\psi C_{\varphi} f \in A_0^{-\alpha}$. This completes the proof.

COROLLARY 3.8. Let $1 \le p < \infty, -1 < \beta < \infty, \alpha > 0$ and φ be holomorphic maps on \mathbb{D} such that $\varphi(\mathbb{D}) \subset \mathbb{D}$. Then the composition operator $C_{\varphi}: A_{\beta}^{p} \to A_{0}^{-\alpha}$ is bounded if and only if

$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha}}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} < \infty$$

COROLLARY 3.9. Let $1 \le p < \infty, -1 < \beta < \infty, \alpha > 0$ and ψ be holomorphic map on \mathbb{D} . Then the multiplication operator $M_{\psi}:A_{\beta}^{p}\to$ $A_0^{-\alpha}$ is bounded if and only if

(i)
$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |\psi(z)| < \infty$$
(ii) $\psi \in A_0^{-\alpha}$.

$$(ii) \ \psi \in A_0^{-\alpha}.$$

The following characterization can be proved on similar lines as Lemma 5.2 in [21].

LEMMA 3.10. A closed set K in $A_0^{-\alpha}$ is compact if and only if it is bounded and satisfies

$$\lim_{|z| \to 1} \sup_{f \in K} (1 - |z|^2)^{\alpha} |f(z)| = 0.$$

THEOREM 3.11. Let $1 \le p < \infty, -1 < \beta < \infty$ and $\alpha > 0$. Let φ and ψ be holomorphic maps on $\mathbb D$ such that $\varphi(\mathbb D)\subset \mathbb D$. Then the weighted composition operator $\psi C_{\varphi}: A_{\beta}^p \to A_0^{-\alpha}$ is compact if and only if

(3.5)
$$\lim_{|z| \to 1} \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} = 0.$$

PROOF. By Lemma 3.10, the set $\{\psi C_{\varphi}f: f \in A_{\beta}^p, ||f||_{A_{\beta}^p} \leq 1\}$ has compact closure in $A_0^{-\alpha}$ if and only if

$$\lim_{|z|\to 1} \sup\{(1-|z|^2)^{\alpha}|(\psi C_{\varphi})(z)|: f\in A_{\beta}^p, ||f||_{A_{\beta}^p} \le M\} = 0,$$

for some M>0. Suppose that $f\in A_0^{-\alpha}$ is such that $||f||_{A_{\beta}^p}\leq 1$, and ψ and φ satisfies (3.5). Then

$$(1 - |z|^{2})^{\alpha} |(\psi C_{\varphi})(z)| = (1 - |z|^{2})^{\alpha} |\psi(z)f(\varphi(z))|$$

$$\leq \frac{(1 - |z|^{2})^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^{2})^{(2+\beta)/p}}.$$

Thus

$$\sup\{(1-|z|^2)^{\alpha}|(\psi C_{\varphi})(z)|: f \in A_{\beta}^p, ||f||_{A_{\beta}^p} \le 1\} \le \frac{(1-|z|^2)^{\alpha}|\psi(z)|}{(1-|\varphi(z)|^2)^{(2+\beta)/p}}$$

and it follows that

$$\lim_{|z|\to 1} \sup\{(1-|z|^2)^{\alpha}|(\psi C_{\varphi})(z)|: f \in A_{\beta}^p, ||f||_{A_{\beta}^p} \le 1\} = 0.$$

Hence $\psi C_{\varphi}: A_{\beta}^{p} \to A_{0}^{-\alpha}$ is compact. Conversely, suppose that $\psi C_{\varphi}: A_{\beta}^{p} \to A_{0}^{-\alpha}$ is compact. Using the same test as in the proof of Theorem 3.6, we see that

(3.6)
$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\alpha} |\psi(z)|}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} = 0.$$

Since $\psi C_{\varphi}: A_{\beta}^{p} \to A_{0}^{-\alpha}$ is bounded, Theorem 3.7 implies that $\psi \in A_{0}^{-\alpha}$. It is easy to show that $\psi \in A_{0}^{-\alpha}$ and (3.6) is equivalent to (3.5).

COROLLARY 3.12. Let $1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0$ and φ be holomorphic map on $\mathbb D$ such that $\varphi(\mathbb D) \subset \mathbb D$. Then the composition operator $C_{\varphi}: A_{\beta}^p \to A_0^{-\alpha}$ is compact if and only if

$$\lim_{|z| \to 1} \frac{(1 - |z|^2)^{\alpha}}{(1 - |\varphi(z)|^2)^{(2+\beta)/p}} = 0.$$

COROLLARY 3.13. Let $1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0$ and ψ be holomorphic map on \mathbb{D} . Then the multiplication operator $M_{\psi}: A_{\beta}^{p} \to A_{0}^{-\alpha}$ is bounded if and only if

(i)
$$\lim_{|z| \to 1} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |\psi(z)| = 0$$

$$(ii) \ \psi \in A_0^{-\alpha}.$$

References

- K. R. M. Attele, Multipliers of composition operators, Tokyo J. Math. 15 (1992), 185–198.
- [2] M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), 224–233.
- [3] _____, Weighted composition operators on spaces of functions with derivatiae in a Hardy space, J. Operator Theory **52** (2004), 173–184.
- [4] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press Boca Raton, New York, 1995.
- [5] Z. Cuckovic and R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. 70 (2004), 499–511.
- [6] F. Forelli, The isometries of H^p spaces, Canad. J Math. 16 (1964), 721–728.

- [7] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces, Springer, New York, Berlin, etc. 2000.
- [8] K. Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., 1988.
- [9] H. Kamowitz, Compact operators of the form uC_{φ} , Pacific J. Math. 80 (1979), 205–211.
- [10] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925).
- [11] B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on Hardy and Bergman spaces, Can. J. Math. 38 (1986), 878-906.
- [12] V. Matache, Compact composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), 1483–1491.
- [13] G. Mirzakarimi and K. Seddighi, Weighted composition operators on Bergman and Dirichlet spaces, Georgian. Math. J. 4 (1997), 373–383.
- [14] H. J. Schwartz, Composition operators on H^p, Thesis, University of Toledo, 1969.
- [15] J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on H², Indiana Univ. Math J. 23 (1973), 471-496.
- [16] J. H. Shapiro, The essential norm of a composition operator, Ann. Math. 125 (1987), 375-404.
- [17] _____, Composition operators and classical function theory, Springer-Verlag, New York. 1993.
- [18] J. H. Shapiro and W. Smith, Hardy spaces that support no compact composition operators, J. Funct. Anal. (to appear).
- [19] R. K. Singh and S. D. Sharma, Composition operators on a functional Hilbert space, Bull. Austral. Math. Soc. 20 (1979), 277-284.
- [20] W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), 2331–2348.
- [21] S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), 191–215.
- [22] S. Ohno and H. Takagi, Some properties of weighted composition operators on algebras of analytic functions, J. Nonlinear Convex Anal. 2 (2001), 369–380.
- [23] S. Ohno and R. Zhao, Weighted composition operators on the Bloch spaces, Bull. Austral. Math. Soc. 63 (2001), 177-185.
- [24] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.

Department of Mathematics University of Jammu Jammu-180006, India

E-mail: aksju_76@yahoo.com somdatt_jammu@yahoo.co.in