Synthesis and Photopolymerization of Discotic Liquid Crystals Containing Hydrogen Bondings and Two Polymerizable Groups

두 종류의 중합기와 수소결합을 가지는 원반형 액정의 합성과 광중합

  • Lee Jun-Hyup (Hyperstructured Organic Materials Research Center and School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee Seung-Jun (Hyperstructured Organic Materials Research Center and School of Chemical and Biological Engineering, Seoul National University) ;
  • Jang Ji-Sun (Hyperstructured Organic Materials Research Center and School of Chemical and Biological Engineering, Seoul National University) ;
  • Jho Jae-Young (Hyperstructured Organic Materials Research Center and School of Chemical and Biological Engineering, Seoul National University)
  • 이준협 (서울대학교 공과대학 화학생물공학부 및 고차구조형 유기산업재료 연구센터) ;
  • 이승준 (서울대학교 공과대학 화학생물공학부 및 고차구조형 유기산업재료 연구센터) ;
  • 장지선 (서울대학교 공과대학 화학생물공학부 및 고차구조형 유기산업재료 연구센터) ;
  • 조재영 (서울대학교 공과대학 화학생물공학부 및 고차구조형 유기산업재료 연구센터)
  • Published : 2006.09.01

Abstract

Polymerizable discotic liquid crystals containing diacetylene and acryloyl groups were formed through hydrogen bonding between phloroglucinol core and polymerizable pyridine derivatives, and their photopolymerization behavior was investigated. The discotic complexes exhibited discotic columnar and rectangular columnar mesophases depending on the number of aromatic rings. Photopolymerization of the discotic complexes was carried out by UV irradiation in the liquid crystalline state. IR and UV-Vis spectroscopy affirmed that diacetylene and acryloyl groups were selectively Polymerized, and that crosslinked polymers containing short conjugated diacetylene oligomers were produced by 1,4-addition. X-ray diffraction experiment showed that the columnar order in the discotic complex containing phenyl-pyridine moiety was maintained after photopolymerization, and that the rectangular columnar order in he discotic Complex with biphenyl units was changed to the lamellar order.

플로로글루시놀과 중합가능한 피리딘 유도체의 수소결합을 이용해 디아세틸렌과 아크릴로일 그룹을 함유 한 새로운 중합가능한 원반형 액정들을 제조하였고 제조된 액정들의 광중합 거동을 조사하였다. 합성된 원반형 액정 복합체들은 메소겐의 방향족 고리의 개수에 따라 원반형 컬럼상과 장방형 컬럼상을 형성하였다. 원반형 액정복합체들의 광중합은 액정상에서 자외선을 조사하여 수행하였다. 자외선 조사 후 디아세틸렌과 아크릴로일 그룹이 선택적으로 중합되었으며, 짧은 공액구조의 디아세틸렌 올리고머를 가지는 가교 고분자들이 1,4-반응에 의해 형성됨을 적외선 분광법과 자외선-가시광선 분광분석을 통해 확인하였다. X-선 회절 실험 결과, 페닐피리딘을 함유한 원반형 액정 복합체의 컬럼상 질서는 광중합 후에도 유지되었고, 바이페닐 단위를 지닌 액정 복합체의 장방형 컬럼상 질서는 라멜라 질서로 변화됨을 확인하였다.

Keywords

References

  1. D. L. Gin, W. Gu, B. A. Pindzola, and W.-J. Zhou, Acc. Chem. Res., 34, 973 (2001) https://doi.org/10.1021/ar000140d
  2. C. D. Favre-Nicolin and J. Lub, Macromolecules, 29, 6143 (1996) https://doi.org/10.1021/ma951818l
  3. M. Okazaki, K. Kawata, H. Nishikawa, and M. Negoro, Polym. Adv. Technol., 11, 398 (2000) https://doi.org/10.1002/1099-1581(200008/12)11:8/12<398::AID-PAT40>3.0.CO;2-2
  4. U. Theissen, S. J. Zilker, T. Pfeuffer, and P. Strohriegl, Adv. Mater., 12, 1698 (2000) https://doi.org/10.1002/1521-4095(200011)12:22<1698::AID-ADMA1698>3.0.CO;2-D
  5. A. Bacher, C. H. Erdelen, W. Paulus, H. Ringsdorf, H-W. Schmidt, and P. Schuhmacher, Macromolecules, 32, 4551 (1999) https://doi.org/10.1021/ma981595+
  6. B. G. Kim, S. Kim, J. Seo, N.-K Oh, W.-C. Zin, and S. Y. Park, Chem. Commun., 2306 (2003)
  7. H. J. Cho, K. Seo, C. J. Lee, H. Yun, and J. Y. Chang, J. Mater. Chem., 13, 986 (2003) https://doi.org/10.1039/b300743j
  8. J. Y. Chang, J. H. Baik, C. B. Lee, and M. J. Han, J. Am. Chem. Soc., 119, 3197 (1997) https://doi.org/10.1021/ja961193m
  9. J. Y. Chang, J. R. Yeon, Y. S. Shin, M. J. Han, and S.-K Hong, Chem. Mater., 12, 1076 (2000) https://doi.org/10.1021/cm990704b
  10. I. H. Hwang, S. J. Lee, and J. Y. Chang, J. Polym. Sci.; Part A: Polym. Chem., 41, 1881 (2003) https://doi.org/10.1002/pola.10736
  11. C.-H. Lee, N.-H. Jeong, K-D. Nam, and T. Kitamura, J. Ind. Eng. Chem., 5, 40 (1999)
  12. B. A. Pindzola, B. P. Hoag. and D. L. Gin, J. Am. Chem. Soc., 123, 4617 (2001) https://doi.org/10.1021/ja0058583
  13. B. P. Hoag and D. L. Gin, Macromolecules, 33, 8549 (2000) https://doi.org/10.1021/ma000812f
  14. J. W. Schultz and R. P. Chartoff, Polymer, 39, 319 (1998) https://doi.org/10.1016/S0032-3861(97)00261-9
  15. M. Ukon, T. Sugino, T. Watanabe, H. Monobe, and Y. Shimizu, Macromol. Mater. Eng., 287, 698 (2002) https://doi.org/10.1002/1439-2054(200210)287:10<698::AID-MAME698>3.0.CO;2-K
  16. B. C. Baxter and D. L. Gin, Macromolecules, 31, 4419 (1998) https://doi.org/10.1021/ma980079g
  17. N. Boden, R. J. Bushby, J. Clements, M. V. Jesudason, P. F. Knowles, and G. Williams, Chem. Phys. Lett., 152, 94 (1988) https://doi.org/10.1016/0009-2614(88)87334-2
  18. X.-S. Feng and C.-Y. Pan, Chem. Phys. Chem., 3, 539 (2002) https://doi.org/10.1002/1439-7641(20020617)3:6<539::AID-CPHC539>3.0.CO;2-V
  19. T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, and K. Hirotsu, J. Am. Chem. Soc., 106, 158 (1984) https://doi.org/10.1021/ja00313a032
  20. A. Sato, T. Kato, and T. Uryu, J. Polym, Sci.; Part A: Polym. Chem., 34, 503 (1996) https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<503::AID-POLA20>3.0.CO;2-S
  21. J. Barbera, R. Gimenez, and J. L. Serrano, Chem. Mater., 12, 481 (2000) https://doi.org/10.1021/cm991120c
  22. H. Zheng, C. K. Lai, and T. M. Swager, Chem. Mater., 7, 2067 (1995) https://doi.org/10.1021/cm00059a013
  23. H. M. Barentsen, M. van Dijk, P. Kimkes, H. Zuilhof, and E. J. R. Sudholter, Macromolecules, 32, 1753 (1999) https://doi.org/10.1021/ma981533j