Thermal, Frictional and Wear Behavior of Carbon Nanofiber/Poly(methyl methacrylate) Composites

탄소나노섬유/폴리(메틸 메타크릴레이트) 복합재료의 열적 및 마찰 마모 거동 연구

  • Park Soo-Jin (Department of Chemistry, Inha University, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Im Se-Hyuk (Department of Chemistry, Inha University, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Jae-Rock (Department of Chemistry, Inha University, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Rhee John-M. (Department of Advanced Organic Materials Engineering, Chonbuk National University)
  • 박수진 (인하대학교 화학과, 한국화학연구원 화학소재연구부) ;
  • 임세혁 (인하대학교 화학과, 한국화학연구원 화학소재연구부) ;
  • 이재락 (인하대학교 화학과, 한국화학연구원 화학소재연구부) ;
  • 이종문 (전북대학교 유기신물질공학과)
  • Published : 2006.09.01

Abstract

In this work, the effect of carbon nanofiber (CNF) on thermal properties, and friction and wear behavior of CNF/PMMA composites were examined. While thermal properties of the composites were investigated with differential scanning calorimetry, thermograyimetric analyzer, and dynamic mechanical analyzer friction and wear behaviors were examined using a friction and wear tester. The glass transition temperature (Tg), integral procedural decomposition temperature (IPDT), storage modulus (E'), and tan ${\delta}$ appeared at higher temperatures with increasing CNF content, which were probably attributed to the presence of strong interactions between the carbonaceous fillers and the PMMA resins matrix. The wear loss in the composites decreased at 0.1 wt% CNF and then increased with 5-10 wt% CNF content. This was due to the existence of large aspect ratio CNF in PMMA which led to an alignment of PMMA chains and an increase of mechanical interlocking, resulting in the formation of crosslinked structures between CNF and PMMA in the composite.

본 연구는 폴리(메틸 메타크릴레이트)(PMMA)에 탄소나노섬유(CNF)의 함량을 달리하여 만든 CNF/PMMA 나노복합재료의 열적 및 마찰 마모 거동에 관하여 고찰하였다. CNF/PMMA의 열적특성은 시차주사열량계 (DSC)와 열중량 분석기 (TGA), 그리고 동적기계분석기(DMA)를 이용하여 고찰하였으며, 마찰 마모 거동은 마찰마모 시험기 (wow tester)를 이용하여 측정하였다. 결과로서, CNF/PMMA 복합재료의 Tg와 integral procedural decomposition temperature(IPDT), storage modulus (E'), 그리고 tan ${\delta}$의 값은 CNF의 함량이 증가함에 따라 증가하였으며, 마찰계수와 마모량은 CNF 함량 0.1 wt%에서는 감소하였다가 CNF 함량 5-10 wt%에는 점차적으로 증가하는 경향을 나타냈다. 이는 PMMA에 세장비 (aspect ratio)가 큰 CNF가 강화제로 첨가됨에 따라 고분자 사슬의 정렬이 일어나며 또한 수지 내에서 기계적 얽힘(mechanical interlocking) 현상이 증가하여 전체적으로 가교화된 구조를 형성하였기 때문이라 판단된다.

Keywords

References

  1. J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd ed, Marcel Dekker, New York, 1990
  2. D. R. Paul and S. Newman, Polymer Blends, Academic Press, New York, 1978
  3. P. K. Mallick, Fiber-reinforced Composites, Marcel Dekker, New York, 1988
  4. D. R. Lee, H. Y. Kim, T. M. MA, S. Y. Park, and M. K. Seo, J. Korean Fiber Soc., 40, 2 (2003)
  5. R. D. Patton, C. U. Pittman, L. Wang, and J. R. Hill, Composites A, 30, 1081 (1999) https://doi.org/10.1016/S1359-835X(99)00018-4
  6. Z. Jin, K. P. Pramoda, G. Xu, and S. H. Goh, Chem. Phys. Lett., 337, 43 (2001) https://doi.org/10.1016/S0009-2614(01)00186-5
  7. S. J. Park, K. S. Cho, and C. G. Choi, J. Colloid Interf Sci., 258, 424 (2003) https://doi.org/10.1016/S0021-9797(02)00094-2
  8. M. J. Galante, P. A. Oyanguren, K. Andromaque, P. M. Frontini, and R. J. J. Williams. Polym. Int., 48, 642 (1999) https://doi.org/10.1002/(SICI)1097-0126(199908)48:8<642::AID-PI207>3.0.CO;2-B
  9. T. C. Chang, C. L. Liao, K. H. Wu, H. B. Chen, and J. C. Yang, Polym, Degrad. Stab., 66, 127 (1999) https://doi.org/10.1016/S0141-3910(99)00061-0
  10. A. Oberlin and M. Endo, J. Cryst. Growth, 32, 335 (1976) https://doi.org/10.1016/0022-0248(76)90115-9
  11. O. S. Carneiro, J. A. Covas, C. A. Bernardo, G. Caldiera, F. W. J. van Hattum, J. M. Ting, R. L. Alig, and M. L. Lake, Compo. Sci. Technol., 58, 401 (1998) https://doi.org/10.1016/S0266-3538(97)00138-3
  12. K. Lozano, J. Bonilla-Rios, and E. V. Barrera, J. Appl. Polym. Sci., 80, 1162 (2001) https://doi.org/10.1002/app.1200
  13. X. Wu, Z. Wang, L. Chen, and X. Huang, Carbon, 42, 1965 (2004) https://doi.org/10.1016/j.carbon.2004.03.035
  14. T. Muhl, J. Kretz, I. Monch, C. M. Schneider, H. Bruckl, and G. Reiss, Appl. Phys. Lett., 76, 786 (2000) https://doi.org/10.1063/1.125895
  15. M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M. S. Dresselhaus, Carbon, 39, 1287 (2001) https://doi.org/10.1016/S0008-6223(00)00295-5
  16. G. M. Wu, Master. Chem. Phys., 85, 81 (2004) https://doi.org/10.1016/j.matchemphys.2003.12.004
  17. M. K. Seo, S. J. Park, and S. K. Lee, J. Colloid Interf. Sci., 285, 306 (2005) https://doi.org/10.1016/j.jcis.2004.10.068
  18. K. Lozano and E. V. Barrera, J. Appl. Polym. Sci., 80, 125 (2001)
  19. D. D. L. Chung, Carbon, 39, 279 (2001) https://doi.org/10.1016/S0008-6223(00)00184-6
  20. X. Shui and D. D. L. Chung, J. Mater. Sci., 35, 1773 (2000) https://doi.org/10.1023/A:1004784720338
  21. J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldi, and S. Kumar, Composites B, 35, 245 (2004) https://doi.org/10.1016/j.compositesb.2003.08.009
  22. K. L. Lau and D. Hui, Composites B, 33, 263 (2002) https://doi.org/10.1016/S1359-8368(02)00012-4
  23. C. Gauthier, L. Chazeau, T. Prasse, and J. Y. Cavaille, Compo. Sci. Technol., 65, 335 (2005) https://doi.org/10.1016/j.compscitech.2004.08.003
  24. W. Brandl, G. Marginean, V. Chirila, and W. Warchewski, Carbon, 42, 5 (2004) https://doi.org/10.1016/j.carbon.2003.09.012
  25. J. Xu, J. P. Donohoe, and C. U. Pittman, Composites A, 35, 693 (2004) https://doi.org/10.1016/j.compositesa.2004.02.016
  26. G. G. Tibbetts, NATO Sci. Ser., Ser. E: Appl. Sci., 372, 1 (2001)
  27. S. J. Park, E. J. Lee, and J. R. Lee, Polymer(Korea), 29, 481 (2005)
  28. K. Friedrich, Friction and Wear of Polymer Composites, Elsevier, New York, 1986
  29. H. C. Sin, N. Saka, and N. P. Suh, Wear, 55, 163 (1979) https://doi.org/10.1016/0043-1648(79)90188-1
  30. L. Gmble, Friction and Lubrication in Mechanical En-gineering, Krayn, Berlin, 1925
  31. H. E. Hintermann, Wear, 100, 381 (1984) https://doi.org/10.1016/0043-1648(84)90023-1
  32. J. K. Lancaster, J. Phys. D: Appl. Phys., 1, 549 (1968) https://doi.org/10.1088/0022-3727/1/5/303
  33. S. J. Park and B. R. Jun, J. Colloid Interf. Sci., 284, 204 (2005) https://doi.org/10.1016/j.jcis.2004.09.074
  34. S. J. Park, B. R. Jun, and D. H. Suh, J. Korean Ind. Eng. Chem., 13, 119 (2002)
  35. H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963) https://doi.org/10.1021/ac60203a013
  36. S. J. Park, M. K. Seo, and J. R. Lee, Carbon, 40, 835 (2002)