Studies on Ethylene and Styrene Copolymerizations with Dinuclear Constrained Geometry Complexes; Effects of Length of Bridge

두 금속 Constrained Geometry Complexes을 이용한 에틸렌과 스티렌 공중합 연구; 다리결합 길이의 영향

  • Yoon Keun-Byoung (Department of Polymer Science, Kyungpook National University) ;
  • Bae Sang-Geun (Korea Institute of Industrial Techcology) ;
  • Lee Chul-Woo (Samsung Electronics Co., Ltd., LCD Business) ;
  • Noh Seok-Kyun (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Lee Dong-Ho (Department of Polymer Science, Kyungpook National University)
  • Published : 2006.09.01

Abstract

The new dinuclear CGC (constrained geometry complexes) with indenyl and methyl sub-stituted indenyl and polymethylene bridge have been synthesized, and the copolymerization of ethylene and styrene has been studied in the presence of methylalumionoxane. The activity of 12-methylene and 9-methylene bridged dinuclear CGC were 4 times higher than that of 6-methylene bridged dinucleay CGC. This result might be understood by the implication that the steric effect rather than the electronic effect nay play a major role to direct the polymerization behavior of the dinuclear CGC. The dinuclear CGCs are very efficient to incorporate styrene in backbone. The styrene contents in the formed co-polymers ranged from 6 to 45 mol% according to the polymerization conditions. The melting temperature of copolymers disappeared at high content of styrene (about 11 mol%) There is no styrene-styrene diblock sequence in copolymers. This result Indicates that the dinuclear CGC are very effective to generate random copolymer of ethylene and styrene.

인덴과 메틸인덴 리간드를 가지고 폴리메틸렌 다리결합으로 구성된 두 금속 CGC (constrained geometry complexes) 촉매를 합성하여 에틸렌과 스티렌 공중합을 행하였다. 촉매 구조에 따른 공중합 활성과 공중합체의 구조 및 열적 성질을 조사하였다. 12-메틸렌 및 9-메틸렌 다리결합을 가진 촉매의 환성은 상업용 CGC 촉매와 6-메틸렌 다리결합을 가진 촉매의 활성보다 4배 이상 높게 나타났는데, 이는 6-메틸렌 다리결합은 입체적으로 중심금속간은 인접한 거리에 위치하게 되어 입체장애에 의해 촉매활성이 감소하게 된다. 다리결합의 길이가 긴 두 금속촉매를 사용하여 제조한 공중합체의 스티렌 함량이 6-45 mol%로 나타났으며, 단량체 공급비([Styrene]/[Ethylene])가 5.0 이상에서는 다리결합의 길이가 긴 촉매로 얻은 공중합체의 $T_m$이 관찰되지 않는 비결정의 공중합체가 생성되었으며, 스티렌의 함량이 증가할수록 공중합체의 $T_m$은 급격히 감소하여 스티렌 함량이 약 11mol% 이상에서는 결정성이 없는 랜덤 공중합체가 생성되었다. C-NMR로 공중합체의 미세구조를 분석한 결과 스티렌 블록이 존재하지 않는 랜덤 공중합체임을 확인할 수 있었다.

Keywords

References

  1. J. Schneier and W. Kaminsky, Metallocene-Based Polyolefins, John Wiley & Sons, New York, 2000
  2. H. Fraueniath, H. Keul, and H. Hcker, Macromolecules. 34, 14 (2001) https://doi.org/10.1021/ma001251v
  3. A. Togni and R. L. Halterman, Metallocenes-Volume 1 & 2, Wiley-VCH, Weinheim, 1998
  4. H. H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger, and R. M. Waymouth, Angew. Chem. Int. Ed Engl., 34, 1143 (1995) https://doi.org/10.1002/anie.199511431
  5. Proceedings of Metallocene'95, April 26-27, Brussels, Belgium, 1995
  6. T. R. Younkin, E. F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs, and D. A. Bansleben, Science, 287, 460 (2000) https://doi.org/10.1126/science.287.5452.460
  7. S. Jungling, R. Mulhaupt, and H. plenio, J. Organomet. Chem., 460, 191 (1993) https://doi.org/10.1016/0022-328X(93)83145-L
  8. A. L. McKnight and R. M. Waymouth, Chem. Rev., 98, 2587 (1998) https://doi.org/10.1021/cr940442r
  9. J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. McKnight, and S. Lai, Eur Pat. Appl. 0416815A2 (1991)
  10. J. C. Stevens and D. R. Neithamer, Eur. Pat. Appl. 418044A2 (1991)
  11. F. G. Sernetz, R. Mulhaupt, F. Amor, T. Eberle, and J. Okuda, J. Polym. Sci., Polym. Chem., 35, 2549 (1997) https://doi.org/10.1002/(SICI)1099-0518(19970930)35:13<2549::AID-POLA2>3.0.CO;2-M
  12. L. E. Manzer, Inore, 21, 135 (1982) https://doi.org/10.1021/ic00131a027
  13. S. K. Noh, M. J. Lee, D. H. Kum, K. S. Kim, W. S. Lyoo, and D. H. Lee, J. Polym. Sci., Polym. Chem., 42, 1712 (2004) https://doi.org/10.1002/pola.11034
  14. S. K. Noh, W. L. Jiang, and D. H. Lee, Macromol. Res., 12, 100 (2004) https://doi.org/10.1007/BF03219001
  15. A. L. McKnight and R. M. Waymouth, Macromolecules, 32, 2816 (1999) https://doi.org/10.1021/ma981365v
  16. F. Amor and J. Okuda, J. Organomet. Chem., 520, 245 (1996) https://doi.org/10.1016/0022-328X(96)06350-4
  17. K. Nomura, H. Okamura, T. Komatsu, and N. Naga, Macromolecules, 35, 5388 (2002) https://doi.org/10.1021/ma0200773
  18. L. Caporaso, L. Izzo, I. Sisti, and L. Oliva, Macromolecules, 35, 4866 (2002) https://doi.org/10.1021/ma011489z
  19. K. Soga, H. T. Ban, T. Uozumi, J. Mol. Cat. A: Chem., 128, 273 (1998) https://doi.org/10.1016/S1381-1169(97)00180-5
  20. S. K. Noh, J. Kim, J. Jung, C. S. Ra, D. H. Lee, H. B. Lee, S. W. Lee, and W. S. Huh, J. Organomet. Chem., 580, 90 (1999) https://doi.org/10.1016/S0022-328X(98)01085-7
  21. S. K. Noh, S. Kim, J. Kim, D. H. Lee, K. B. Yoon, H. B. Lee, S. W. Lee, and W. S. Huh, J. Polym. Sci., Polym. Chem., 35, 3717 (1997) https://doi.org/10.1002/(SICI)1099-0518(199712)35:17<3717::AID-POLA11>3.0.CO;2-G
  22. F. G. Sernetz, R. Mulhaupt, F. Amor, T. Eberle, and J. Okuda, J. Polym. Sci., Polym. Chem., 35, 1571 (1997) https://doi.org/10.1002/(SICI)1099-0518(199706)35:8<1571::AID-POLA26>3.0.CO;2-3
  23. K. Nomura, T. Komatsu, and Y. Imanishi, Macromolecules, 33, 8122 (2000) https://doi.org/10.1021/ma0011284
  24. T. Arai, T. Ohtsu, and S. Suzuki, Macromol. Repid Commun., 19, 327 (1998) https://doi.org/10.1002/(SICI)1521-3927(19980601)19:6<327::AID-MARC327>3.0.CO;2-G
  25. G. Xu, Macromolecules, 31, 2395 (1998) https://doi.org/10.1021/ma971480q