멀티캐스트 CDMA 네트워크에서의 Soft-combine을 지원할 기지국의 선정*

김재훈**·[†]명영수***

Optimal Soft-combine Zone Configuration in a Multicast CDMA Network*

Jae-Hoon Kim** · Young-Soo Myung***

■ Abstract ■

In this paper we deal with a cell planning issue arisen in a CDMA based multicast network. In a CDMA based wireless network, a terminal can significantly reduce the bit error rate via the cohesion of data streams from multiple base stations. In this case, multiple base stations have to be operated according to a common time line. The cells whose base stations are operated as such are called soft-combined cells. Therefore, a terminal can take advantage of error rate reduction, if the terminal is in a *soft-combined cell* and at least one neighboring cell is also soft-combined. However, as soft-combining operation gives heavy burden to the network controller, the limited number of cells can be soft-combined. Our problem is to find a limited number of soft-combined cells such that the benefit of the soft-combining operation is maximized.

Keyword: Multicast CDMA Network, Cell Selection, Combinatorial Optimization

논문접수일: 2005년 12월 3일 논문게재확정일: 2006년 6월 19일

^{*} This work was supported by Korea Research Foundation Grant(KRF-2004-041-B00141).

^{**} Network R&D Center, SK Telecom

^{***} 단국대학교 경영학부

^{*} 교신저자

1. Introduction

Mobile multicast has recently emerged and become a topic of significant discussion on both of technical advances and practical usefulness. Mobile multicast makes various types of on-demanded services available in the mobile environment. From a technical point of view, the area of mobile multicast radio technologies has become very diverse and manifested through the emergence of many international standardization activities along with regional proprietary solutions. Especially, in 3G mobile radio standardization, multicast services, named as Multicast Service (BCMCS) in cdma2000 1xEV-DO [5, 6] and Multimedia Broadcast/Multicast Service (MBMS) in UMTS WCDMA [2], are now being deployed in CDMA-based 3G networks. The former one, which specifies mobile multicast support for the 3rd generation cdma2000 cellular, satisfies the perceived market demand while minimizing resource usage in the radio access network [14]. The latter one, for the next version of UMTS, is looking at defining point to multipoint bearers to send multimedia services to several users in a cell over one radio bearer [4, 13].

The nature of multicast in CDMA networks is not quite different from that of wired line networks. Needless to say, a single data stream per link is the essential feature of multicast and there is no difference between wired and wireless networks on this point. However, in last-mile access lines, *interfaces-thru-air* of wireless network induces significant difference from wired line networks. In a wired line network, the data stream should be distributed via separated access line to each user in last-mile access line.

but in a wireless network, only a single data stream with specific discriminator, such as multicast code or frequency, is dispersed into the air. The terminals extract the data stream and decode it to receive a specific multicast service.

In a CDMA based wireless network, a terminal can hold multiple connections from near base stations and receives an identical multicast content via multiple connections, that is similar to soft handover procedure. In this case, the terminal can significantly reduce the bit error rate via the cohesion of data stream from multiple base stations. The cohesion of data streams from two different base stations is possible only when two base stations have to emit data stream containing the same content at the same time epoch. In other words, the two base stations should be operated according to a common time line. The cells whose base stations are operated as such are called soft-combined cells. For the details of the soft-combining operation, refer to [1]. We will say that two cells are neighbor if a terminal in each cell can receive data from the base station in the other center. Therefore, if a terminal locates in a soft-combined cell and at least one neighboring cell is also soft-combined, the terminal can take advantage of error rate reduction.

The operations, onto the common time line, require strict cell management by a network controller, such as Base Station Controller (BSC) or Radio Network Controller (RNC). In order to transmit contents to a group of base stations through a common time line, the network controller has to keep the path information to the corresponding base stations and analyze the delay effect of specific path to each base station. The network controller should give time stamps

to every multicast packet to specify the time epoch for packet emitting. As those operations for keeping common time line yield additional heavy burden to the network controller, a network controller can handle only a limited number of soft-combined cells.

In this paper, we deal with a problem of selecting the cells to be soft-combined in order to maximize the benefit of the soft-combining operation. As we mentioned, a terminal in a softcombined cell can take advantage of error rate reduction, if at least one neighboring cell is also soft-combined. Our objective is to maximize the multicast traffic to be benefited by the soft-combining operation. Although it is hard to measure the volume of multicast traffic, it is shown that the proportion of multicast traffic to the total traffic is uniform on the average. So, our objective is to maximize the total traffic demand of the cells that are benefited by the soft-combining operation. Instead of maximizing the volume of multicast traffic benefited, one may also think about more specific criteria related with the grade of service, such as the average error rate of the multicast traffic. It would be better if new criteria reflect the difference of the benefit among cells having different number of the soft-combined neighboring cells. However, it seems to be difficult to come up with a good method to solve a model with such complex obiective function.

Based on the above observation, our problem can be described as the following combinatorial optimization problem, referred as the soft-combined cell selection problem (SCSP). We are given the set of cells with traffic demand and the maximum allowable number of soft-combined cells. We are also given information on the

neighboring relation among cells. Then our problem is to find the prescribed number of cells such that each selected cell has at least one selected neighbor. The objective of the problem is to maximize the total traffic demand of the selected cells. Although this problem is very simple and has an interesting feature, it has not been addressed in the literature. The most similar problem to the SCSP is the k-MST problem defined as follows. Given a graph G=(V,E) with non-negative cost for each edge, the k-MST problem is that of finding the minimum-cost tree in G that spans at least k nodes. The k-MST problem is known to be NP-hard [9] and a couple of researchers [7, 11] have found approximation algorithms for the k-MST problem.

The remaining part of the paper is organized as follows. In Section 2, we formulate the SCSP as a 0-1 integer programming model, and show that the problem is *NP-hard*. In Section 3, we present algorithms that provide lower and upper bounds of the problem. Computational results for evaluating the performance of the proposed algorithm are presented in Section 4.

2. Problem Statement and Formulation

For a service area consisting of n cells, we define the following notation. Let $N = \{1, 2, \dots, n\}$ be the set of cells, and d(i) denotes the traffic demand of cell i for each $i \in N$. For each cell $i \in N$, N(i) denotes the set of the neighboring cells to cell i. Let k be the maximum allowable number of soft-combined cells. Then the SCSP is to find a set of k cells, such that each cell in the set has at least one neighbor in the set. The objective of the problem is to maximize the total traffic

demand of the selected cells.

To formulate the SCSP, we define 0-1 variables x(i) for each cell $i \in N$ such that x(i) = 1 if cell i is selected for soft-combining, and 0, otherwise. Then the SCSP can be formulated as the following 0-1 integer programming problem.

(P) Max
$$\sum_{i \in N} d(i)x(i)$$
 (1)

s.t.
$$\sum_{i \in N} x(i) \le k,$$
 (2)

$$x(i) - \sum_{i \in \mathcal{N}(i)} x(j) \le 0, \qquad i \in \mathbb{N}$$
 (3)

$$x(i) \in \{0,1\}, \qquad i \in N \qquad (4)$$

The constraint (2) implies that the selected cells are not more than the maximum allowable numbers. The constraint (3) ensures that if a cell is selected as a soft-combined cell, at least one cell neighboring to it has to be also soft-combined.

Now we show that the SCSP is an *NP-hard* problem. To prove this, we will show that the node-cover problem, denoted by NODE-COVER, can be transformed in polynomial time to the decision version of the SCSP, denoted by D-SCSP. Since NODE-COVER is *NP-complete* [10], the above statement implies that D-SCSP is also *NP-complete*. NODE-COVER and D-SCSP are defined as follows.

NODE-COVER: Given a graph G = (V, E) and an integer t < |V|, the node-cover problem is defined to determine whether a graph has a set C of at most t nodes such that all edges of G are adjacent to at least one node of C. We call such a set C as a node-cover of G.

D-SCSP: Given an instance of SCSP, the decision version of SCSP is to determine whether there exists a feasible solution of the SCSP with

the objective value not less than a given value.

Theorem 1. D-SCSP is NP-complete.

Proof. We give a polynomial time reduction from NODE-COVER to D-SCSP. Consider an instance of NODE-COVER for a given G = (V, E)and t. Our reduction maps the given instance of NODE-COVER to an instance of D-SCSP as follows. Each cell in N corresponds to either a node or an edge in G, i.e., $N=V \cup E$. Then we set the traffic demand of each cell such that d(i) = 0 if cell i corresponds to a node of V, and d(i) = 1 if cell i corresponds to an edge of E. Now we define neighborhood relation between two cells of N. Every cell corresponding a node can be a neighbor only to a cell corresponding an edge and vice versa. Between such pair of cells, each cell can be a neighbor to each other, only when if the corresponding node is one of the end nodes of the corresponding edge. If we let k=|E|+t, there is a node cover C with $|C| \le t$ if and only if there exists a feasible solution of SCSP with the objective value not less than |E|.

Note that even if a given graph is planar, the corresponding NODE-COVER is NP-complete [10]. Therefore, when each cell represents a part of a region, the corresponding SCSP is still NP-hard.

3. Solution Method

Now, we develop a practical algorithm to solve the SCSP. As the problem is *NP-hard*, we are focusing on producing a feasible solution of good quality that provides a lower bound for the problem. We also show how to obtain an upper bound that can be used to evaluate the quality of a generated feasible solution. These two procedures can also be used when obtaining an exact solution through a branch and bound method.

3.1 Calculating upper bounds

In this section, we describe a procedure for computing upper bounds of the problem. Consider the LP (Linear Programming) relaxation of (P) where integrality condition (4) is replaced by the following constraints.

$$x(i) \le 1, \qquad i \in N \tag{5}$$

$$x(i) \ge 0, \qquad i \in N \tag{6}$$

Let the LP relaxation of (P) be (LP). The optimal objective value of (LP) is an upper bound for the optimal value of (P).

To obtain an upper bound, we generate a dual feasible solution instead of exactly solving (LP). We come up with a dual method to exploit the good structure of the dual of (LP). As (LP) also has rather compact structure, a commercial LP solver such as CPLEX may be a good alternative. However, our method enriches the list of solution tools and our computational experiments will show that the dual method performs well. The dual of (LP), denoted by (DLP), is as follows: (DLP)

Min
$$\lambda k + \sum_{i=1}^{n} u(i)$$
 (7)

s.t.
$$\lambda + w(i) - \sum_{i \in \mathcal{M}(i)} w(j) + u(i) \ge d(i), \quad i \in \mathbb{N}$$
 (8)

$$\lambda, w(i), u(i) \ge 0, \qquad i \in N \quad (9)$$

In this formulation, λ , w(i), and u(i) correspond to (2), (3), and (5), respectively.

Our algorithm obtains a feasible solution of (DLP) whose objective value is an upper bound of both (LP) and (P). Our algorithm may be

viewed as a dual ascent heuristic, which successfully applied to several combinatorial optimization problems [3, 8, 15]. Let's define s(i), I^- and, I^0 as follows:

$$s(i) = \lambda + w(i) - \sum_{j \in \mathcal{N}(i)} w(j) + u(i) - d(i),$$

$$I^{-} = \{i \in N \mid s(i) < 0\}, \text{ and } I^{0} = \{i \in N \mid s(i) = 0\}.$$

We initially set all the dual variables λ , w(i)'s, and u(i)'s equal to 0 and increase them to satisfy the feasibility condition, that $I^- = \emptyset$. Our strategy is to increase dual variables while keeping the objective value as low as possible. Since w(i)'s do not appear in the objective function, we try to update w(i)'s first to increase s(i) for some $i \in I^-$ without violating the feasibility condition for $i \in N \setminus I^-$. While the increase of u(i) directly increases both s(i) and the objective value by the same amount, the increase of λ increases all s(i)'s by the same amount and the objective value by k times the amount. So, our algorithm increases λ only when it can increase s(i)'s for at least k+1 elements in I^- . Our algorithm is formally described as follows:

Algorithm UB

- 1. Initially set w(i) = u(i) = 0, $\forall i \in \mathbb{N}$ and $\lambda = 0$.
- 2. For each $i \in I^-$, if s(j) > 0 for all $j \in N(i)$, then set $w(i) \leftarrow w(i) + \min\{|s(i)|, \min_{j \in N(i)} s(j)\}$ and update s(j) for $j \in N(i) \cup \{i\}$ and I^- .
- 3. If $|I^-| > k$, set $\lambda \leftarrow \lambda + \min\{|s(i)||i \in I^-\}$ and update s(i) for $i \in N$ and I^- .
- 4. If any update in steps 2 or 3, go to step 2.
- 5. For each $i \in I^-$, set $u(i) \leftarrow |s(i)|$ and $s(i) \leftarrow 0$.

3.2 Calculating lower bounds

Now we consider how to obtain a lower bound

(LB) for (P). Our algorithm, called LB, is an add-type heuristic that iteratively selects a subset of cells not more than k such that each cell in the subset is selected together with at least one neighboring cell. In each iteration, we permanently include a cell $i \in N$ into the list of the selected cells, say SELECT, when either cell i is neighboring to any cell in SELECT, or cell i can be included together with a neighboring cell in the candidate set, called CANDID. CANDID is an initially null set and includes cells that failed to be included into SELECT in the previous iterations.

As different sequences of scanning cells for selection produce different solutions, we have tried two different strategies for sequencing. The first strategy uses information on dual solutions obtained through the upper bounding process. We classify the nodes into two groups, I^0 and $N-I^0$ and select a cell in I^0 before any cell in $N-I^0$. Among the cells in the same group, a cell with larger traffic demand, d(i), is scanned earlier. The second strategy simply considers a cell with the largest traffic demand first.

Algorithm LB

- 1. Initially set SELECT= \emptyset and CANDID= \emptyset .
- 2. while |SELECT| < k do the following steps.
- 2.1 Select a cell $i \in N$ -(SELECT \cup CANDID) according to a predetermined sequence. If any cell neighboring to cell i already exists in SELECT, then include cell i into SELECT. Otherwise, go to the next step.
- 2.2 If $|\text{SELECT}| \ge k-1$, include cell i into CANDID and return to step 2.1. Otherwise, go to the next step.
- 2.3 If a cell neighboring to cell i exists in CANDID, include cell i into SELECT. Additionally include

the cells of CANDID neighboring to cell i into SELECT until |SELECT|=k. If CANDID has no cell neighboring to cell i, include cell i into CANDID and return to step 2.1.

4. Computational Results

The proposed algorithm for calculating lower and upper bounds of the problem was coded in the language C and test runs were performed on a PC with 1.4GHz Pentium M processor. We performed computational experiments using two classes of problems. In the first set of test problems, all cells are assumed as omni-type with hexagonal form and in the second set of test problems, all cells are assumed to have non hexagonal form. The traffic demand of each cell is given as downlink load factor (see ref. [4]).

We have tested 1000 data instances with different numbers of cells, different values of k, and different neighboring relation. In the first set of test problems, the networks have cells from 129 to 529. The second set includes the problems with rather large networks having cells from 500 to 2000. We test the different levels of the maximum number of soft-combined cells by setting k equal to 10%, 20%, 30%, 40%, 50% of the total number of cells. In a network of hexagonal cells, each cell has six neighboring cells. In a network of non-hexagonal cells, we set neighboring relation arbitrary and make three different cases according to the average number of neighbors per cell. In each case, the average numbers of neighbors per cell are 10%, 20%, and 30% of the total cells, respectively.

<Table 1> shows the results for the first set of test problems and <Table 2> for the second set of test problems. We classified each group by the size of networks, the average number of neighbors, and the levels of k. We have tested 10 instances per group and present the average value of 10 instances for each group in the tables. Upper and lower bounds, denoted by UB and LB, respectively, were obtained using the procedures presented in Section 3.1 and 3.2. In order to evaluate our dual heuristic of solving the LP relaxation, we compare it with the optimal LP value. We also compare the

computing time of the dual heuristic with the time spent to solve (LP) by CPLEX 9.0 callable library. We have compared the two different strategies of sequencing cells in Algorithm LB.

<Table 1> and <Table 2> show that our dual heuristic found an optimal or near optimal solution quickly and all the ratios of (UB-LB)/LB for the tested instances are within a reasonable range. We also have found that no big difference between the two strategies of sequencing cells in Algorithm LB.

(Table 1) Computational results for hexagonal cell networks

N	k	LP (CPLEX)		UB		LB(stra	tegy 1)	LB(strategy 2)		
		value	CPU (sec)	value	CPU (sec)	value	CPU (sec)	value	CPU (sec)	Gap*
129	13	11.84	0.0060	11.91	0.0000	11.74	0.0000	11.70	0.0000	0.01
	26	22.53	0.0080	22.64	0.0000	22.23	0.0000	22,05	0.0000	0.02
	39	32.11	0.0080	32.17	0.0000	31.36	0.0000	31,25	0.0000	0.02
	52	40.63	0.0080	40.70	0.0000	39.44	0.0000	39.27	0.0000	0.03
	65	47.95	0.0050	47.98	0.0010	45.99	0.0000	45.83	0.0000	0.04
	23	21.20	0.0100	21.25	0.0010	21.07	0.0000	21.06	0.0000	0.01
	46	40.25	0.0100	40.34	0.0000	39.71	0.0010	39.65	0.0000	0.02
228	68	56.93	0.0090	57.06	0.0010	55.70	0.0000	55.55	0.0020	0.02
	91	72.32	0.0090	72.37	0.0010	70.15	0.0010	70.03	0.0000	0.03
	114	85.28	0.0090	85.31	0.0000	82.03	0.0010	82.11	0.0000	0.04
	34	31.28	0.0150	31.36	0.0000	31.09	0.0010	30.99	0.0000	0.01
	67	58.87	0.0140	59.03	0.0010	58.13	0.0010	57.92	0.0010	0.02
336	101	84.44	0.0110	84.57	0.0020	82.70	0.0010	82.50	0.0000	0.02
	134	106.79	0.0100	106.87	0.0040	103.93	0.0020	103.75	0.0000	0.03
	168	125.97	0.0100	126.03	0.0040	121.54	0.0000	121.50	0.0000	0.04
	43	39.83	0.0130	39.93	0.0060	39.55	0.0030	39.42	0.0010	0.01
	86	76.05	0.0140	76.23	0.0060	75.05	0.0010	74,66	0.0000	0.02
428	128	107.21	0.0130	107.40	0.0060	104.62	0.0020	104.57	0.0000	0.03
	171	135.74	0.0120	135.82	0.0050	131.44	0.0030	131.56	0.0000	0.03
	214	159.88	0.0160	159.91	0.0020	154.01	0.0010	153.88	0.0000	0.04
	53	48.96	0.0160	49.10	0.0080	48.68	0.0040	48.56	0.0010	0.01
529	106	93.47	0.0140	93.71	0.0100	92.25	0.0050	91.79	0.0000	0.02
	159	133.46	0.0160	133.64	0.0040	130.36	0.0080	130.17	0.0010	0.03
	212	168.61	0.0140	168.74	0.0060	163.57	0.0040	163.09	0.0010	0.03
	265	197.65	0.0130	197.68	0.0060	190.80	0.0030	190.63	0.0010	0.04

주) * GAP=(UB-best LB)/best LB

⟨Table 2⟩ Computational results for non-hexagonal cell networks

N	Density	k	LP(CPLEX)		UB		LB(strategy 1)		LB(strategy 2)		
			value	CPU	value	CPU	value	CPU	value	CPU	Gap*
			<u> </u>	(sec)	<u> </u>	(sec)		(sec)		(sec)	
100	1	10	9.33	0.0070	9.37	0.0000	9.21	0.0000	9.20	0.0000	0.01
		20	17.61	0.0050	17.63	0.0000	17.08	0.0000	17.08	0.0000	0.03
	0.1	30	25.46	0.0080	25.48	0.0000	24.57	0.0000	24.60	0.0000	0.04
		40	31.14	0.0070	31.14	0.0010	29.45	0.0000	29.47	0.0000	0.06
		50_	37.32	0.0080	37.33	0.0000	36.04	0.0000	36.05	0.0010	0.04
	0.2	10_	9.48	0.0050	9.49	0.0000	9.35	0.0000	9.36	0.0000	0.01
		20	17.73	0.0060	17.73	0.0000	17.35	0.0000	17.35	0.0000	0.02
		30	25.36	0.0061	25.36	0.0000	24.87	0.0010	24.87	0.0000	0.02
		40	31.82	0.0060	31.82	0.0000	31.16	0.0000	31.16	0.0000	0.02
		50	37.41	0.0050	37.41	0.0010	36.50	0.0000	36.50	0.0000	0.03
		10	9.48	0.0060	9.48	0.0010	9.39	0.0000	9.39	0.0000	0.01
		20	18.12	0.0060	18.12	0.0010	17.83	0.0000	17.83	0.0000	0.02
	0.3	30	25.19	0.0070	25.19	0.0010	24.86	0.0000	24.86	0.0000	0.01
		40	31.58	0.0070	31.58	0.0000	31.17	0.0010	31.17	0.0000	0.01
		_50	37.23	0.0060	37.23	0.0000	36.50	0.0000	36.50	0.0000	0.02
		50	47.52	0.0292	47.52	0.0110	47.09	0.0030	47.09	0.0010	0.01
		100	89.65	0.0290	89.65	0.0100	88.92	0.0020	88.92	0.0010	0.01
	0.1	150	126.78	0.0271	126.78	0.0100	125.45	0.0050	125.45	0.0010	0.01
		200	160.67	0.0300	160.67	0.0090	158.89	0.0020	158.89	0.0000	0.01
		250_	186.31	0.0300	186.31	0.0091	183.68	0.0010	183.68	0.0000	0.01
	0.2	50	47.33	0.0571	47.33	0.0150	47.15	0.0030	47.15	0.0000	0.00
		100	90.29	0.0531	90.29	0.0140	90.06	0.0040	90.06	0.0010	0.00
500		150	126.64	0.0531	126.64	0.0130	126.00	0.0040	126.00	0.0020	0.01
		200	161.63	0.0540	161.63	0.0150	160.86	0.0010	160.86	0.0011	0.00
		250	189.29	0.0550	189.29	0.0100	188.08	0.0030	188.08	0.0000	0.01
	0.3	50	47.53	0.0812	47.53	0.0200	47.36	0.0000	47.36	0.0000	0.00
		100	90.02	0.0810	90.02	0.0171	89.82	0.0030	89.82	0.0030	0.00
		150	127.25	0.0791	127.25	0.0181	126.70	0.0020	126.70	0.0020	0.00
	ļ	200	160.52	0.0822	160.52	0.0130	159.85	0.0020	159.85	0.0010	0.00
		250	186.87	0.0811	186.87	0.0140	186.49	0.0030	186.49	0.0020	0.00
,		100	95.06	0.1232	95.06	0.0531	94.62	0.0130	94.62	0.0040	0.00
		200	179.26	0.1281	179.26	0.0521	178.25	0.0110	178.25	0.0050	0.01
!	0.1	300	255.36	0.1241	255.36	0.0431	253.97	0.0140	253.97	0.0050	0.01
		400	321.84	0.1251	321.84	0.0470	320.20	0.0121	320.20	0.0040	0.01
	0.2	500	376.02	0.1262	376.02	0.0351	373.68	0.0120	373.68	0.0030	0.01
1000		100	94.93	0.2212	94.93	0.0662	94.77	0.0110	94.77	0.0040	0.00
		200	179.55	0.2323	179.55	0.0622	179.16	0.0120	179.16	0.0030	0.00
		300	256.73	0.2294	256.73	0.0550	256.01	0.0170	256.01	0.0030	0.00
		400	322.49	0.2212	322.49	0.0532	321.45	0.0140	321.45	0.0050	0.00
		500	376.75	0.2274	376.75	0.0502	375.57	0.0130	375.57	0.0030	0.00
	-	100	95.00	0.3193	95.00	0.0821	94.88	0.0140	94.88	0.0050	0.00
	0.2	200	179.81	0.3163	179.81	0.0791	179.60	0.0130	179.60	0.0040	0.00
	0.3	300	254.92	0.3143	254.92	0.0732	254.35	0.0130	254.35	0.0040	0.00
		400	321.81	0.3157	321.81	0.0690	321.30	0.0120	321.30	0.0040	0.00
		500	376.26	0.3157	376.26	0.0670	375.37	0.0110	375.37	0.0050	0.00

1	Γah	۵ا	21	갦	소
١.	(I)		11	71	=

N	Density		LP(CPLEX)		UB		LB(strategy 1)		LB(strategy 2)		
		k	value	CPU (sec)	value	CPU (sec)	value	CPU (sec)	value	CPU (sec)	Gap*
	0.1	150	142.28	0.2704	142.28	0.1281	141.86	0.0280	141.86	0.0150	0.00
		300	269.40	0.2674	269.40	0.1151	268.39	0.0271	268.39	0.0090	0.00
		450	382.09	0.2725	382.09	0.1061	380.76	0.0270	380.76	0.0090	0.00
		600	481.29	0.2614	481.29	0.0931	479.15	0.0290	479.15	0.0070	0.00
		750	564.11	0.2574	564.11	0.0871	561.27	0.0280	561.27	0.0090	0.01
		150	142.48	0.5117	142.48	0.1705	142.31	0.0280	142.31	0.0291	0.00
		300	269.78	0.5107	269.78	0.1573	269.47	0.0271	269.47	0.0232	0.00
1500	0.2	450	382.31	0.5069	382.31	0.1451	381.78	0.0270	381.78	0.0160	0.00
		600	480.82	0.5048	480.82	0.1301	479.59	0.0280	479.59	0.0141	0.00
		750	561.64	0.5019	561.64	0.1141	560.49	0.0300	560.49	0.0200	0.00
		150	142.13	0.7841	142.13	0.2041	141.97	0.0271	141.97	0.0180	0.00
		300	268.77	0.7692	268.77	0.2022	268.58	0.0270	268.58	0.0130	0.00
	0.3	450	382.09	0.7621	382.09	0.1811	381.65	0.0380	381.65	0.0200	0.00
		600	481.67	0.7740	481.67	0.1853	481.04	0.0290	481.04	0.0200	0.00
		750	563.04	0.7692	563.04	0.1643	562.20	0.0301	562.20	0.0160	0.00
	0.1	200	189.73	0.5087	189.73	0.2224	189.17	0.0530	189.17	0.0201	0.00
		400	358.45	0.5057	358.45	0.2134	357.31	0.0540	357.31	0.0220	0.00
		600	512.18	0.5017	512.18	0.1933	510.88	0.0560	510.88	0.0220	0.00
		800	640.90	0.4939	640.90	0.1721	639.36	0.0560	639.36	0.0241	0.00
		1000	751.47	0.4916	751.47	0.1583	748.94	0.0571	748.94	0.0220	0.00
		200	190.04	0.9432	190.04	0.2887	189.87	0.0530	189.87	0.0220	0.00
		_400	360.01	0.9521	360.01	0.2675	359.58	0.0651	359.58	0.0332	0.00
2000	0.2	600	509.93	0.9295	509.93	0.2544	509.36	0.0570	509.36	0.0200	0.00
		800	640.95	0.9405	640.95	0.2274	639.95	0.0600	639.95	0.0290	0.00
		1000	749.33	0.9413	749.33	0.2143	748.45	0.0542	748.45	0.0200	0.00
		200	189.90	4.2982	189.90	0.3719	189.74	0.0520	189.74	0.0180	0.00
		400	360.21	4.6416	360.21	0.3525	359.97	0.0511	359.97	0.0221	0.00
	0.3	_600	512.66	3.9858	512.66	0.3102	512.28	0.0522	512.28	0.0200	0.00
		800	640.49	4.0749	640.49	0.3174	639.70	0.0681	639.70	0.0310	0.00
		1000	746.76	3.6753	746.76	0.3005	746.30	0.0551	746.30	0.0170	0.00

주) * GAP=(UB-best LB)/best LB

5. Conclusion

In this paper, we have dealt with the problem of finding the optimal set of cells to be soft-combined such that for each selected cell, at least one cell neighboring to it also has to be selected. Our objective is to maximize the total traffic demand of the selected cells. This problem has an appli-

cation in cell planning for a CDMA based multicast network. We have shown that the problem is *NP-hard* and introduced a 0-1 integer programming model for the problem. We also presented an algorithm that provides lower and upper bounds of the problem. Computational results have shown that the proposed algorithm is a practical one.

References

- 3GPP TR 25.803 S-CCPCH performance for MBMS, Sep. 2005.
- [2] 3GPP TS 22.146 Multimedia Broadcast/Multicast Service: Stage1, 3GPP, Mar. 2003.
- [3] Balakrishnan, A., T.L. Magnanti and R.T. Wong, "A dual-ascent procedure for largescale uncapacitated network design," *Oper*ations Research, Vol.37(1989), pp.716-740.
- [4] Boni, A. et al., "Multimedia Broadcast Multicast Service Technology Overview and Service Aspects," Fifth IEE International Conference on 3G Mobile Communication Technologies, 2004.
- [5] Broadcast-Multicast Service (BCMCS) Framework Draft Document, 3GPP2, 2003.
- [6] CDMA2000 High Rate Broadcast-Multicast Packet Data Air Interface Specification, 3GPP2 TSG-C SWG2.5, Aug. 2003.
- [7] Chudak, F., T. Roughgarden, and D.P. Williamson, "Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation," *Mathematical Programming*, Vol.100(2004), pp.411-421.
- [8] Erlenkotter, D., "A dual based procedure for uncapacitated facility location," *Operations*

- Research, Vol.26(1978), pp.992-1009.
- [9] Fischetti, M., H. Hamacher, K. Jørnsten, and F. Maffioli, "Weighted k-Cardinality Trees: Complexity and Polyhedral Structure," *Networks*, Vol.24(1994), pp.11-21.
- [10] Garey, M.R. and D.S. Johnson, *Computers* and intractability: a Guide to the theory of NP-completeness, W.H. Freeman, San Francisco, 1979.
- [11] Garg, N., "A 3-Approximation for the Minimum Tree Spanning k Vertices," Proceedings of the 37th Annual Symposium on Foundations of Computer Science, (1996), pp.302-309.
- [12] Holma, H. and A. Toskala, WCDMA for UMTS, Wiley, 2000.
- [13] Tatesh, S. and S.K. Palat, "Future Evolution of 3G Networks," International Conference on Information and Communication Technologies: From Theory to Applications, 2004.
- [14] Wang, J., R. Sinnarajah, T. Chen, Y. Wei, and E. Tiedemann, "Broadcast and Multicast Services in cdma 2000," *IEEE communications magazine*, 2004.
- [15] Wong, R.T., "A dual ascent approach for Steiner tree problems on a directed graph," *Mathematical Programming*, Vol.28(1984), pp.271-287.