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Rental Resource Management Model with Capacity
Expansion and Return

Eungab Kim* ‘- Jinho Byun*

—m Abstract =

We consider a rental company that dynamically manages its capacity level through capacity addition and return.
While serving customer with its own capacity, the company expands its capacity by renting items from an outside
source so that it can avoid lost opportunities of rental which occur when stock is not sufficient. If stock becomes suffi-
clently large enough to cope with demands, the company returns expanded capacity to the outside source. Formulating
the model into a Markov decision problem, we identify an optimal capacity management policy which states when
the company should expand its capacity and when it should return expanded capacity after capacity addition. Since
it is intractable to analytically find the optimal capacity management policy and the optimal size of capacity expansion,
we present a numerical procedure that finds these optimal values based on the value iteration method. Numerical
analysis is implemented and we observe monotonic properties of the optimal performance measures by system param-
eters, which are meaningful in developing effective heuristic policies.
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1. Introduction

This paper considers a rental company that
dynamically controls its capacity level through
capacity addition and return. While serving
customer with its own capacity, the company
expands its capacity by renting items from an
outside source so that it can avoid lost oppor-
tunities of rental which occur when stock is not
sufficient. If stock becomes sufficiently large
enough to cope with demands, the company re-
turns expanded capacity to the outside source.

Rental business is receiving growing attention
in many business areas such as leisure and en—
tertainment goods and office, medical, and house
appliances. By its dynamics, items are returned
after their rental so that they may be used re-
peatedly and rental periods are typically much
shorter than the life of the items. Knowing how
much rental capacity to maintain is critical to the
rental business operation. Too much rental ca-
pacity reduces cash position of a rental company
while too little rental capacity turns customers
away to the rental company’s competitor. Since
demand and rental durations may be uncertain
over any period of time, it is essential to develop
effective policies for controlling the capacity.

The area of research relevant to this problem
is the capacity management literature. Capacity
expansion with growing demands over time has
been studied in [2, 4, 21, 22, 25]. Research subject
particularly relevant to our work is a capacity
operation problem found in [1, 20, 24, 26]. Rocklin
et al. [24] considered an optimal capacity ex-
pansion/contraction of a production/service fa-
cility under stochastic demands. They showed
that the optimal policy is characterized by two
threshold values such that at the beginning of

each period of planning horizon, if the capacity

level is below the lower (upper) limit, it is optimal
to bring the capacity up (down) to that limit.
Rajagopalan and Soteriou [20] studied a capacity
expansion problem with features of capacity ac-
quisition, disposal, and replacement using integer
programming model. So and Tang [26] addressed
a policy for dynamicaily adjusting operating ca-
pacity according to the system state to manage
congestion in service systems and developed
queueing models for analyzing its impacts on
two types of service systems : a system with
several operators to handle incoming calls over
a number of lines and a system with multiple
identical service counters in parallel to serve
customers. Angelus and Porteus [1] addressed
the problem of deciding how much capacity to
have and how much to produce at each planning
period in a produce-to-stock facility. Assuming
that demands stochastically increase up to a peak
and then decrease, they characterized the optimal
capacity plan as a target interval policy similar
to the one defined in [24] under instantaneous ca-
pacity additions or reductions. They also showed
that in the case with carrying over unsold units,
the optimal capacity target intervals can depend
on the amount of initial inventory available at
each period and it is a decreasing function of the
initial inventory.

The other important area of research relevant
to this problem is the literature regarding in-
ventory management with product returns.
Reusable products are taken back from the mar-
ket after use and transformed into serviceable
goods through remanufacturing processes or
disposed depending on the quality standards.
Since the remanufactured products may not be

sufficient to cover demands on serviceable



goods, stocks are replenished from outside
suppliers. The readers are referred to [6] and [7]
for the detailed literature review in this area. The
product return models studied in the literature
can be classified into several categories accord-
ing to whether or not there exists an explicit dis-
tinction between old and new serviceable prod-
ucts, remanufacturing and replenishment lead
times, fixed replenishment order costs, or de-
pendency of demand and return processes. Those
models can be also divided according to periodic
review and continuous review and whether or
not allowing for the disposal for the returned
products.

The capacity management model in this paper
has some features similar to those in the cash
flow management in financial management deci-
sions ({5, 15, 19]). The firm takes actions such as
selling or buying securities to increase or de-
crease the daily cash level so that it can be
brought to a suitable level. The cash flow man-
agement models above differs from our model in
the sense that return and demand processes is
not correlated, that is, cash inflow (deposit) and
cash outflow (withdrawal, expenditure) are dif-
ferent streamlines. Finally, we conclude the rele-
vant literature review by noting that the opera-
tional structure of the model presented in this
paper can be viewed as a multi-echelon in-
ventory system with lateral transshipment (see
Grahovac and Chakravarty [8] for the detailed
references in this area).

The prospect of the model presented in this
paper raises important strategic issues with re-
spect to the capacity management. More specifi-
cally, this paper addresses the following research
questions : (1) When should the company sched-
ule its capacity addition from the outside source?
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This decision is affected by the size of capacity
in rent by customers as well as the size of ca-
pacity in stock the company holds. (2) After ca-
pacity addition, when should the company return
expanded capacity to the outside source? (3) If
the system parameters are changed, what are
their impacts on the capacity addition and return
decision?

This paper deals with these issues in the con-
text of the Markov model. Even though the
Markov model may be restricted for modeling
the real world rental problems, it can provide us
with insights into the effective rental capacity
management. As a starting point for the analysis,
we restrict our attention to the company with a
single type of capacity. There can be many ways
to model rental periods and here we choose to
represent it as an exponential random variable.
The exponential rental period is appropriate
when the period is random with a larger var-
iance-to-mean ratio. In particular, if the rental
period is flexible and extendable, it is known that
the exponential distribution approximation is
reasonable [29].

Our model differs from the inventory manage-
ment literature with product returns in two
aspects. First, all products issued in our model
should return, which means that the return rate
is determined by the number of products in rent
by the customers. In contrast, product return
models have partial returns from the products
issued. Further, it is often assumed that the de-
mand and return processes are independent.
Second, we consider both capacity (serviceable
products in stock) augmentation and reduction
while product return models consider only ca-
pacity augmentation through stock replenish-
ment or remanufacturing. Our model also differs



from the capacity management literature above
because they do not consider a situation where
the product is returned after use.

The paper is organized as follows. In the next
section, we provide a formulation of our model.
Analysis of the optimal capacity management
policy is given in Section 3. Section 4 presents
a numerical procedure of finding the optimal per-
formance and test results which exhibit a mo-
notonicity of optimal performance with respect
to system parameters. Finally we state our con-

clusions in the last section.

2. Problem Formulation

Consider a rental company, denoted by Com-
pany 1, that operates pieces of &V rental items de-
manded by customers who arrive according to
a Poisson process with rate A. The durations of
their rentals are independent, exponentially dis-
tributed random variables with mean x'. We
assume that rental items are not depreciated in
time and thus all items are identical in terms of
rental service. It is also assumed that each item
rented by customer returns in a serviceable
condition. Each arriving customer rents exactly
one unit of item if items are in stock. If no items
are available for rental, it is lost and charged at
¢;. A revenue p is realized per unit of time during
which each item is rented by customer while a
holding cost ¢, is incurred per unit of time during
which each item is held in stock.

Whenever company 1 rents @Q items from an
outside source, denoted by company 2, a fixed
setup cost, ¢, is incurred and a variable cost, ¢,
is charged upon each item per unit of time during
the rental period. Upon each instance company

1 returns @ items to Company 2, a fixed setup

cost ¢, is incurred. Delivery time from company

2 to company 1 is assumed to be negligible.
[Figure 1] graphically illustrates a rental busi-
ness process described above.

Return Return
Demand Demand
—_— —_—
— —

Rent Rent

[Figure 11 A rental model with capacity addition
and return

At each decision epoch, company 1 should de-
cide whether or not to expand capacity by rent-
ing @ items from company 2, or whether or not
to return @ items to company 2 after capacity
addition. The set of decision epochs is the set
of customer arrival epoch and customer return
epoch. Without any loss of optimality, the class
of admissible strategies is taken to be the set of
non-anticipative, stationary, non-randomized,
Markov policies that are based on perfect ob—
servations of the queue length processes.

The original problem is a continuous time
Markov decision problem (MDP) where the sum
of the transition rates at every state is bounded
by v=A+(~N+ @u. Let the profit at timew €R*
be discounted with a factor e **. After following
the uniformization process (Lipmann [13]), a
continuous time MDP can be formulated with an
equivalent discrete time MDP with a transition
rate v and a discount factor v/{(8+v). The es-
sence of this uniformization process is to allow
fictitious self-loop transitions for all the state
that has a smaller transition rate than ~. By doing
so, each state has the same transition rate equal
to v and the expected transition time is constant
and equals 1/v. Without any loss of generality,
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we assume that B8+~y=1. Hence, the discount
factor of the discrete time MDP becomes ~.

A state is described by the vector (z,x,,0)
where =, and =z, denote the number of items in
stock and the number of items rented by custom-—
er, respectively, and ¢ is an indicator variable. If
§=1, company 1 is renting @ items whereas if
§=0, it is not. The state space is denoted by I.
At each decision epoch, there are Rent and Do
not rent actions in state (z,,7,,0), and Return and
Do not return actions in state (z,,z,1). Note that
z +z, = N+46Q.

Either when é=0 and Do not rent action 1s ap-
plied or when 6=1 and Do not return action is
applied, (z,,2,,6) is transited to (z, —Lz,+14)
and (z, +1,z,—1,6) by a customer arrival and
a customer return, respectively. If Rent ac-
tion is applied to (z;,z,,0), it is transited to
(z, +@Q-1,2,+1,1) and (z, +@+1,3,—-11) by a
customer arrival and a customer return, re-
spectively. When Return action is applied to
(z,,2,,1), it is transited to (#, — @—1,z, +1,0) and
(z¢, ~Q+L=z,—1,0) by a customer arrival and a
customer return, respectively.

The goal of this paper is to find a rental ca-
pacity addition and return strategy that max-
imizes company 1’s profit subject to the costs of
stock holding, customer losing, and capacity ad-
dition/return. Let J(z,,x,6) be the optimal ex-
pected discounted profit over an infinite horizon
when the initial state is given by (z,,z,,6). We
first define the one stage expected discounted
profit in state (z,,z,,6) which is given by

g(zl,ZQ,é) =pz, —C,T, —ckQ1{6=1}—/\cL 1{:5l =0}

where the indicator function 1a is 1 if a is true,
otherwise, 0. Note that v is the discount factor
for the discrete time MDP and the expected tran—

sition time is 1/v. In (x,,%,,1), a cost of renting
@ items is incurred at a rate of ¢, @ during the
expected transition time while in (O,zz,ﬁ); a cost
of losing customers is incurred at a rate of Ac;

during one stage. Denote

Dlz, z,) =(z, — 1,2, +1) if 2, > 0; (z,,z,) otherwise,
Ka, z,)= (2, +1,2,-1) ifz, > 0; (2,,2,) otherwise,

Since the expected discounted profit during the
expected transition time is bounded, the optimal
total discounted profit function J can be shown
to satisfy the following optimality equation
(Bellman's Equation) (see Proposition 2, Ch.5 of
Bertsekas [3]) :

Ky ,3,,6) = max{ T J(z; 2, 8), TpJ(m;,35,8) }, §=0,1
where

T, Kz, 3,,8) = glz,,2,,6) + AJ(D(z,,7,,6))
+z,5J(1(z,,2,,6))
+(N+ Q= 2y )y Sz, 25, 6),
Ty Ky, 20,0) = —co+ Ty Jz, + Qzy,1),
I}ZJ(zl,le): —cpt+ IZ,J(xl - Q,xZ,O).

7, and 7 respectively are value iteration oper-
ators corresponding to Do not rent and Rent
when §=0, and Do not return and Return when
0=1,

3. Optimal Capacity Expansion
and Return Policy

In this section, we characterize the optimal
properties of the capacity expansion and return
policy. [Figure 2] shows a typical sample path
of stock depletion at company 1 in time. Since
the stock level is decreased by customer demand

and increased by customer return, the net stock



depletion rate can have both positive and neg-
ative slopes depending on the status of demand
and return rates.

We start with introducing the following
lemma. Its proof directly follows from the defi-
nition of value function 7; and 7. The first
property of Lemma 1 says if it is optimal to rent
@ items from in state (z,,,,0), then the return
action in (z, + Qz,,1) is not optimal. Similarly, the
second property states that if it is optimal to re-
turn @ items in state (z,,2,,1), company 1 should
not expand its capacity in state (z, — Qx,,0).

*y

Capacity
Retumn

Capacity
Addition

time

[Figure 2] Stock flow at company 1 in time

Lemma 1.

(i) If Jz,,z,,0) = TpHz,.7,,0), then
J(:zs1 +Q,x2,1)= 1;,J(x1 + Q,zQ,l),

(i) I Jz,,2y,1) = TpHa,,20,1),, then
Jz, — Qx,,0)= T, Jz, — @ ,,0).

The problem presented here falls in the cat-
egory of the optimal control of finite queueing
system. When queueing capacities are unlimited,
the optimality of a monotonic control policy has
been well established from the properties of val-
ue function such as convexity and submodularity
(supermodularity). When the queue capacity
constraint is introduced, however, the analysis
becomes complex and few results on the optimal

control have been reported. Our numerical inves-

tigation indicates that J(=,,z,6) is neither convex
nor submodular with respect to =, and z,. These
results keep us from applying general results
about minimization of submodular functions (see
[27]) to our problem to structuralize an optimal
policy.

In this paper, we show that there exists an op-
timal policy with threshold property, provided
that the following relationship holds among cost

and revenue parameters :

Assumption P.
e, +p = A, = gt (e, +¢,)Q/ (1—7). (1)

The company earns p per unit time if there is
at least one item in rent and pays ¢, per unit time
if there is at least one item in stock. Hence, ¢, +p
can be interpreted as the net rental revenue per
unit time. Ac, implies the expected cost rate of
lost opportunities of rental. The third part of (1)
is the cost incurred when renting @ items from
company 2 and holding them in stock during the
infinite length- of time. Hence Assumption P
states that the expected cost rate of lost oppor-
tunities of rental cannot exceed the net rental
revenue rate. It also says that the cost incurred
when expanded capacity is never rented should
not exceed the expected cost rate of lost oppor—
tunities of rental. If this is not the case, company
1 does not have to expand its capacity because
the cost of losing customer is cheaper than that
of capacity addition. In fact, Assumption P is
a necessary condition which guarantees the ex-
istence of the threshold type of an optimal policy.
From numerical investigation with a variety of
examples, however, we find that the optimal pol-
icy still has a threshold property even when

Assumption P is violated. For this reason, we



conjecture that the optimal properties verified in
this paper are valid regardless of Assumption P.

In order to establish the structural properties
of the optimal capacity management policy, it is
sufficient to show that certain properties of the
functions defined on state space I are preserved
under the operator 7 ([18]). Let 7 be the set of
all functions defined on I' such that if € F, then

—cp < flo, + @2, 1) — f(z,,2,,0) < ¢4 (2)
AL Flz + Q1) < A fla,2,,0), 3
fla, + @z, 1) — flz,7,,0) = ~ (¢, +¢,)@/ (1 =), (4)
flo, +1,2,,8) < flz,z, +1,6), 6=0,1, (5)
AL flzy,2,,8) < ¢ 6)
where

A flzy,20,0) = flz, +1,2,,8) — flz,,2, +1,8), 6=0,1.

Operators 4,, implies the value gained when
holding one more item in stock and having one
less item rented.

Lemma 2 is straightforward because we as-
sume that the delivery time is negligible. It states
that company 1 should not expand its capacity
when the stock is not empty.

Lemma 2. If f €F,

T, f(2,25,0) > Tof (5,5,0), 3,>0.  (6)
Proof : See the Appendix.

The following lemma states that it is always
profitable for company 1 to rent @ items from
company 2 when the stock is empty.

Lemma 3. If f €F,
T, (0, N,0) > T;, f(0, N,0). (7

Proof : See the Appendix.
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In the next lemma, we establish company 1's
optimal decision when it is in the capacity ex—
pansion mode.

Lemma 4. If f €F,
Ay Ty f@y,25,1) < A Tif(wy,25,1), 2 2 Q. (8)

Proof : See the Appendix.

When company 1 is in the capacity expansion
mode, Equation (8) provides greater incentive to
return expanded @ items as the stock increases.
To see this, suppose that Z;f(z,,z,+1,1)—
T,f(z,,2, +1,1) <0. Hence, it is optimal to return
@ items in (z,,z,,1). By (8), T f(z, +1,2,1)—
Tpflz, +L,3,y,1) < T, flz, x, +1,1) — Tpf (2,2, +1,1)
<0, It means if it is optimal to return @ items
withaz, items in stock, then it is also optimal to
return @ items with z, +1 items in stock, which
establishes the optimality of a threshold function.

The following lemma guarantees that Equation
(2)~(6) are preserved underT,

Lemma 5. If f €F, If € F.
Proof : See the Appendix.

Now we can identify the optimal return policy
when company 1 is in the capacity eXpansion

mode.

Theorem 1.

(1) The optimal value function J satisfies
Equation (2)~(6), that is, JEF,

(i1) Let

©”: =min{z, = Q: Tpf(x),3y,1) > T, f(z;,2,,1)}.

If company 1 is renting @ items from company
2, then, it is optimal to retwn @ items whenever
z, = 6,



Proof :

(1) The result follows directly from Lemma 5.
(i1) Suppose that it is not optimal to return in
state (6" +1,2,—1,1), ie,

T, /6" +1,z, —1,1) > T,A6" +1,z, —1,1). From the
definition of 6%, we have I,;J6%2,1)<TzJ
{¢,7,,1). By subtracting the second inequality
from the first one, we have 4, T, 6"z, 1,1} >

A, T,€",z,—1,1), This is a contradiction by

Lemma 4. O

4. Numerical Study

In this section, we discuss how to evaluate the
optimal performance with respect to the problem
parameters. Since it is intractable to analytically
find the optimal return point €~ and the optimal
size of capacity addition @*, we focus on numeri-
cally finding these optimal values, based on the
value iteration (VI) method. For the clarity and
easiness of the study, we put our attention to the
average profit problem rather than the dis-
counted profit one. VI enables us to find the opti-
mal return point ©* as well as the optimal aver-
age profit, J. Refer to Chapter 7 of Bertsekas
[3] for the detail of VI.

Unfortunately, the computation of the optimal
average profit violates Assumption P. Since
B=0 for the average profit problem and thus
v=1, the third part of Assumption P goes to
infinity. However, the numerical investigation
indicates that the structure of the optimal policy
exploited in section 3 can be valid for the average
profit problem. We tested the optimality of the
threshold property with a variety of test ex-
amples. Without any exceptional cases, we ob-
served that the optimality of the threshold prop-

erty is true for the average profit problem. Even

though test examples in <Table 1> do not meet
Assumption P, we believe that the parameter
settings of these examples are reasonable.

In searching for @, it is natural to investigate
whether or not the optimal average profit is a
convex function of @ Our numerical inves-
tigations suggest that the optimal average profit
is convex in @ even though we could not prove
it. The following notations are introduced in the
optimal solution procedure which jointly finds @*
and €" :

7 (z,,2,,6) : the optimal action in state (z,,,.6)
found at iteration k of VI given @

HY=,,2,,6) : the value function in state (z,,%,.9)
evaluated at iteration k& of VI given @

€ : termination criterion of the procedure

JQ) : the optimal average profit given @

mg (z,,2,,8)  the optimal action in state (z,,x,,8)
found at the termination of VI given @

Optimal solution procedure :
1. Start with @>0.
2. Implementation of Value Iteration
(a) Initialization : Choose the reference state as
(0,0,0), set k=0, and for each state (z,,z,,5),
pick the value function A%z,,z,,6)=0.
(b) Value iteration step : Implement a VI on
the current value function estimate #* :
TH =z, ,3,,8) =
max{ T, Hx, ,2,,6), T, H (z,,7,,6)}
where
T Hz, ,208) = g(x,,2,,6) + \H* (D(,,7,,6))
+ 2, pH* (L2, 2,,6))
+(V+ Q—, ) pH (2, 2,,6),
T HY(2,,2,,0) = — o+ T, H¥(z, + Qx,,1),
T, H¥x),2y,1) = —cp + T, Bz, — Q,2,,0).



When =0, if Z,H(z,,7,,8) < TpH (z,,2,,8),
let 7 (z,,,,6) = Rent ; otherwise, 7 (z,,z,,6)
= Do not rent.
When 6=1, if T,H (x,,z,,8) < TH z,,3,,0),
let 7*(z,,2,,6) = Return ; otherwise, ©* (z,,2,,6)
= Do not return.

(c) Termination test : Perform the following
convergence test :
b, =ming, ., .5)c P TH @,525,0) — HY@,,2,,0)}

by =max(y . 5)e A TH 1y, 2,,6) — H =z, ,2,,0)}

If (5,—b)>e for every state (z,,z,,8), let
Hkﬂ(z],zz,é) = ]Hk(xl,m2,5)— JHI‘(O,O,O)y

increase k by one, and go to Value itera-

tion step. Otherwise, go to Evaluation step.

(d) Evaluation step : Set JAQ) = 7#H%0,0,0)

and g (2,,2,,8) =7 (2,,2,,6) for every state
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3. Decrease @ by one and go to STEP 2 and com-
pute JQ—-1).

If 1Q-1)<JQ), go to STEP 4.

Otherwise, continue this step until finding @'

such that J(@'—1) <J(@).
Set @'=@', F=J(q), and
er= a_rgminxl{(azl ,T,,1) Toil@y,2y,1) = Return} .
Stop the procedure.

4. Increase @ by one and go to STEP 2 and com-
pute AQ+1).

If 7(@+1)<J(Q), set =@ J=7(q), and
OF= argyninx‘(x1 ,xz,l) 1 (x1 1Xy, 1) = Return,
Otherwise, continue this step until finding @”

such that J(Q"+1) <J(Q").
Set ¢"'=¢@", F=J@Q"), and

o = a.rgminxl{(zl,mz,l) : ﬂQ,(xl,zz,l) = Return}.

(z,,2,,8). Stop the procedure.
{Table 1> Numerical test results on the optimal performance
Ex. N P Ch cr Ck Cs CR A [ 7 Q" e’
1 30 50 1 100 0 10 0 25 0.1 1241.124 13 15
2 10 1222.628 3 9
3 20 1209.961 6 7
4 30 1200.534 5 6
5 40 1193.267 4 5
6 50 1187.129 3 4
7 &0 1183.296 3 4
8 30 50 1 100 30 0 25 0.1 1201.927 5 6
9 10 1200534 5 6
10 100 1190.442 5 7
11 200 1183.39 4 7
12 300 1178.032 4 7
13 400 1173515 4 8
14 30 50 1 0 30 10 25 0.1 1203.53 4 5
15 100 1200534 5 6
16 200 1197744 6 7
17 300 1195.748 6 7
18 400 1193.742 6 7
19 500 1192.146 7 8
20 30 30 1 100 30 10 25 0.1 707.64 4 5
21 40 953.53 4 5
22 50 1200.534 5 6
23 60 1447.754 6 7
24 70 1695.748 6 7




In <Table 1>, we present numerical test results
which show the optimal performance. Example
1 represents a base case, and in Example 2
through 19 we systematically changed one of the
problem parameters, ¢, ¢, and c; to test the opti-
mal performance. When we compute the optimal
average profits, termination criterion ¢ is set to
1072,

Based on the computational results with a va-
riety of test examples including ones in <Table
1>, we observe monotonic properties of the opti—
mal policy with respect to the cost parameters :

- ©* is decreasing in capacity addition variable
cost ¢,

- 6* is increasing in capacity addition setup cost
CS.

- ©” is increasing in customer lost cost ¢;.

As long as other parameters remain the same,
the decrease in capacity addition variable cost,

¢, will motivate company 1 to delay returning

expanded items. Hence, it is reasonable to expect
that given (z,,z,,1), the optimal return point 6*
will be greater than before. The intuition behind
the second observation is as follows. As long as
other parameters remain the same, one can ex-
pect that the increase in capacity addition setup
cost, ¢5, will force company 1 to not use capacity
expansion frequently. Hence, given (z,,%,,1), one
might expect that the optimal return point will
higher in a larger setup cost than in a smaller
one. Using a similar reasoning, we can explain
the third observation. As long as other parame-
ters remain the same, the increase in customer
lost cost, ¢;, will force company 1 to keep ex-
panded items in stock for a longer period, since
the possibility of stockout can be reduced. Hence,

given state (z,,2,,1), the optimal return point will
be higher than before. <Table 2> and [Figure 3]
illustrate the effect of ¢, on the optimal return

point, ©*, given Q.

Numerical investigation also indicates that J
is decreasing as each of the cost parameters in-
creases assuming all other parameters are held
constant. In addition, it shows

- @ is decreasing in capacity addition variable
cost ¢,

- @ is increasing In capacity addition setup cost
cS!

- @ is increasing in customer lost cost ¢;.

The first and second phenomenon can be ex-
plained using the reasoning of the economic
order quantity (EOQ) model. In EOQ model, it
can be easily seen that the optimal order quantity
decreases in inventory holding cost and increases
in order setup cost. The capacity addition varia-
ble cost and setup cost can be compared with
inventory holding cost and order setup cost of
EOQ model, respectively. The third observation
confirms that the increase in the size of capacity
expansion contributes to the reduction in the lost
opportunities of rental.

(Table 2> Effects of ¢, on the optimal return point

e gven @
Ex{Niplelealale|ea|r|p|@ T o
1|30[10] 1 [10| 0 {500[ 0 |25(0.1] 5 |237.933]|14
2 05 236982 12
3 1 236.156 | 11
4 15 236386 10
5 2 23469 |10
6 25 23399410
7 3 2333464 9
8 35 23273 [ 9
9 4 232113] 9
10 45 2314971 9




A thorough study of the optimal selection of
@ is beyond the scope of this paper, which fo-
cuses on how best to use capacity addition/
return. However, we believe that these monoto-
nicity properties will be very useful in developing
a heuristic formula which approximates @*.

14
12

10T

0 \ . A A . . . . -
5 10 15 20 25 30 35 40 45 50

[Figure 3] The change in the optimal return point
as a function of ¢,

5. Conclusions

In this paper, we proposed a new rental resource
management model with capacity expansion and
return. One aspect distinguishing the rental re-
source from traditional inventory resources is
that it is repeatedly reused. This paper exploited
the optimal properties of the capacity manage-
merit policy and presented a numerical procedure
which finds the optimal performance measures.

Major contributions of our work to the reverse
logistics and capacity management literature are
summarized as follows. First, we presented and
analyzed a model which simultaneously considers
the dependency of the return process on the demand
process and the capacity addition/return. To the
best of our knowledge, this is the first attempt
to deal with capacity control issue in the area
of reverse logistics. Second, we found a necessary

condition that guarantees the existence of an op-

timal policy with threshold property, which is
meaningful because general results found in infinite
queueing models cannot be applied to our model.

Numerical investigation was performed with
test examples. It exhibited that the optimal return
point can be monotonically changed as a function
of the cost parameters. We observed the mono-
tonic properties of the optimal profit with respect
to system parameters even though we could not
prove it. Numerical investigation also suggested
that the optimal profit should be convex with re-
spect to the size of capacity addition. Hence, it
is conjectured that there may exist an unique size
of capacity addition which maximizes the com-
pany's profit.

Many open problems remain to be explored.
First, our formulation can be easily extends to
general customer arrival and rental processes
and we conjecture that our structural results
continue to hold. Second, in practice, renting
items from outside source requires setup times
as well as setup costs. Hence, exploring how op—
timal capacity expansion and return policy are
affected‘ by the presence of these time parame-
ters is a very important question.

Our model can be extended in many ways. One
application area is the cash flow management in
financial management decisions. In finance liter-
ature, there has been a tendency to isolate fi-
nancing from investment decisions. For example,
a firm's financing decisions are taken as given
or as independent of the investment decisions,
even though neither theory nor practice consid-
erations support such a separation. As Mayers
and Pogue [14] points out, financial management
requires simultaneous consideration of the in-

vestment and financing options facing the firm.



At this moment, the capacity control mechanism
presented in this paper can be applied to the cash
flow management. Maintaining an optimal level
of a firm's cash flow is a critical problem in cor-
porate finance because cash flow shortfalls si-
multaneously affect both investment and financ-
ing decisions. Firms experiencing cash flow
shortfalls should use external capital markets to
cover shortfalls at the cost of accessing external
capital or forgoing investment opportunities. In
addition, because idle cash earns no interest, too
much cash in firms generates opportunity costs
and free cash flow costs. Thus, interaction of
corporate financing and investment decisions
should be considered in cash flow management.
The financial management literature has spent
much time examining the factors that cause cash
flows to fluctuate (Minton and Schrand, [17D.
Optimal cash management strategy is, however,
only dealt with in the inventory cash manage-
ment model of Miller and Orr [15]. The approach
used in this paper might broaden the implications
for corporate financial management.
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Appendix

Proof of Lemma 2.
T, f(2),30,0) — T f (3,,25,0) = (¢, +¢.) @+ce+ Af(z, —1,3, +1,0) = flz, =1+ Qz, +1,1)]
+:1:2;4[f([(x1,z2 ),O)—f(](gs1 +Qz, ), D+ (V+ Q—a:z)u[f(arl,:rz,ﬂ) —f(:cl + Q,zz,l)]

> (¢, +¢,)Q+cg—cs (by (2)) 2 0(sincey<1). O

Proof of Lemma 3.

Tof (0,N,0)— T, £ (0,N,0) = A, — (¢, +¢,) Q—cs+ AL f(Q— 1, N+ 1,1) — £(0, N,0)]
+ Nulf (@+1,N-1,1) = f(LN=1,0)] + Qulf (@ M1) - £(0,N,0)]

> e, — (6, +6) @—ce+ ALF(Q N1) - £(0,N,0)]
+Nulf(Q+1L,N—-1,1)— f(1L, N-1,0)] + Qulf (@ M1) ~ £(0,M0)] (by (5))

= A, — (g, +6)Q@—cs— g, +¢)@/(1—7) (by (4)

=g —cg— (e, +c)@/(1—y) =0 (by (1). O

Proof of Lemma 4. A, T;f(z,,2,,1) — & Tpflz,,z,,1)
= =g lx, =Q+MA flx, —1x, +1,1)— A flx, —1-Q.x, +1,0)1{x, >Q}l
+az ]t flz + 2, —1,1) = A 2 — @+ Lz, — 1,001 {x, >1}
+(N+ Q—z, — Dula, fla),2,,1) — 2, flz, — Q,,0)] < 0.
The inequality of X term follows by (3) when z, > @ and by (6) when z; = @ The inequality correspond-

ing to p term follows by (3). O

Proof of Lemma 5. Denote by (U/R) the optimal action in (z,,%,,6). U andR respectively represent
Do not rent and Rent in (z,,z,,0) and Do not return and Return in (z,,z,,1),

(1) 2f(z, + Qzy,1) — If(z,.,,0) < s : We focus on the combination of actions admissible in (z,,z,,0) and
(z, + @ z,,1). Case(RR) is excluded by Lemma 1. If (BR1), »,=0 by Lemma 2 and 7,f(0,z,,0)—
T (@, 1)= —c

If (GO), T flm 2,0)— T, f (e, + Quyol) = Tp f(2,%,,0) = Ty f o + Qap 1)=—¢5

If (UR), T,f(z,,2,,0) — Tpf(z; + Q3y,1) =cp 2—cg

—cg < If(, + Quy, 1) — If(2y,,0) * If (GR), Tpf(s + @y 1) — T f(3,,25,0) =—cp.

If (UD), Tfla, +Quyl) — Tpf(, 2,0) = Tpflz, + Q1) — Ty flm, 2,,0) = —cp.

If (RV), then =, =0 by Lemma 2 and 7,f(Qx,1) — Tpf(0,2,,0) = ¢g =—cp.



(ii) Suppose z, > 0. The optimal action in (=, +1,z, —1,0) and (z,z, +1,0) becomes Do not rent by Lemma

2. We focus on the combination of actions admissible in (z, + @+1,2,,1) and (%, + @z, +1,1). Case (U, R)
is excluded by Lemma 4. For(RR), by the definition of value function, A, Zxf(z, + @ =z,,1)—
-2, T f (=, 2,,0) =0. For (U,U), we have

ATl + Qayl) < A T f(z + Qay,1) (by Lemma 4) =4, 7, f(2,,2,,0). For (BU),

Tpf(z, + Q+1,3,,1) — T, f (3, + @z, +1,1) < A T fz, + Qz,,1) = AT f (m),,,0).

Suppose z,=0. Using Lemma 1 and 2, the optimal action in (@,1), (1, N—1,0), and (0,¥,0) is Do
not return, Do not rent, and Rent, respectively. If the optimal action in (@+1,~—1,1) is Do not return,
ALIF(Q N—-1,1)— A, 1f(0, N-1,0)
=T, f(Q+1L,N-1,1)— T f(QN,1) — (Z;:f (1, N—1,0) = T,f (0,7, 0))
=T f(Q+LN-1,1)~ T, f(1, N—1,0)—¢,< 0 (by (2)).

If the optimal action in(@+1,N—1,1) is Return, &, 7f(Q N—1,1)— &, 1f(0, N-1,0)
= T f(Q+1,N—1,1)~ T f(QN,1) — (T, f (1, N—1,0) — T/ (0, N,0)) = —cp~cg <0,

(iii) We focus on the combinations of actions admissible in states (z, + @z,.1) and (z,,2,,0). Case (RR)
is excluded by Lemma 1. For (U, 1), z, >0 by Lemma 2 and
T, f(x, + @y, 1) — T f (2, 25,0) =— (¢, +¢,)Q+Aflz, + @—1,2,+1,1) = flz, — 1,2, +1,0)]
+ zulf(lle, + Q) 1)~ fFU(z,,2,),0)] + W+ Q- )ulf (2, + Q1) — f(2y,2,,0)]
>—(c, +¢.)@—(c, +¢.)Q/(1=%) (by (4)) =—(c, +¢,)Q/(1—7). For (BU), by (T;1),
Tpf (@) 4+ Qzy, 1) — T, f (3,,75,0) = T, f (@, + @5y, 1) — T f (2),5,,0) 2~ (g, +¢,) @/ (1—1).

For (U,R), ;=0 by Lemma 3 and 7,f(@=,,1)— Tpf(0,2,,0) =c5 =—(c, +¢,)Q/(1—).

(v} Suppose é=1. If = = @ case (UR) is excluded by Lemma 4. For (RR), T,f(z +1,5,1)—
T, flz),z, +1,1)
< T fz = Q+1,2,,0) — Ty flz, — Qz, +1,0) <0 (by (U, U) with 6= 0).
For (4, 0), T, f(z, +1,2,,1)— T, f (z;,z, +1,1)
< Tpfle +1,25,1) = T f (2,2, +1,1) (by Lemma 4) < 0 (by(&R)).
For (RU), T;f(m +1,2,,1) — T, f(%,,3, +1,1) < Ty flz, +1,2,,1) — T f (%, 7, + 1,1) £ 0.
If z, <@ Do not return is optimal in (z, +1,2,,1) and (z;,z, +1,1). Then,
T, f(z, +1,2,,1) = Ty, f (2,2, + 1,1)
=—¢, —pticlx, = 0+ A[F(x,%, +1,1) — £ (D (x;,%, +1,0)]1 {x, > 0}
+zyulf (Hz, +1,2,),0) — flz, +1,2,0)+(N+ @—z, — Dplf (z, +1,2,,0) ~ flz; 2, +1,0))

<—¢,—pt+iglx, =0 (by (5)) < 0 (by (1).



Suppose 6=0. Then, the optimal action in (z, +1,,,0) is Do not rent by Lemma 2. If the optimal

action in (z,,z,+1,0) is Do not rent, =, >0 by Lemma 2 and Lemma 3.

T, f(z, +1,3,,0) — T}, f (z,,2, +1,0) <0 can be shown by the same argument in (& 0) with é=1. If Rent
is optimal in (z,z, +1,0) is, z;, =0 by Lemma 3. And

T, F(Q,N=1,0)— Tf(0,N,0) < T, f (1, N—1,0) — T, £ (0,NM,0) <0 (by case (I, 1)).

(v) Consider cases with §=0. Suppose that = = 0. Then, the optimal action in (1,2,,0) and (0,7, +1,0)
is Do not rent by Lemma 2 and Rent, respectively.

T f (1,2,,0) — T, f(0,2,,0) < T f(1,2,,0)— T, £(0,,,0)

=X, ~p—e, +audy, f(1,z, —1,0)~ (N+ @Q— =, — 1), (0,2,,0)

<A —p-c +(N+@-Duc, < ¢, —p—c, < ¢,

Suppose that =, > 0. Do not rent is optimal in (z, +1,%,,0) and (v, z, +1,0) by Lemma 2.

T, f(, +1,12,0); Ty, f(x,,2,,0) < ¢, can be shown using an argument similar to (U, U) with =, = 0. Cases

with 6=1 can be also shown by the same arguments in cases with §=0. O



