Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC6633

Bacillus subtilis ATCC6633이 Bacillus subtilis cx1의 박테리오신 생산에 미치는 유도효과

  • Chang Mi (Department of Food and Nutrition, Chosun University) ;
  • Chang Hae-Choon (Department of Food and Nutrition, Chosun University)
  • 장미 (조선대학교 식품영양학과) ;
  • 장해춘 (조선대학교 식품영양학과)
  • Published : 2006.09.01

Abstract

BSCX1 was an antimicrobial peptide produced by Bacillus subtilis cx1. Attempts were made to determine the location of inducing factor in the bacteriocin-sensitive cell affecting bacteriocin BSCX1 production. Mixed culture of the bacteriocin producer strain B. subtilis cx1 and its sensitive strain B. subtilis ATCC6633, increased production of bacteriocin BSCX1. The result suggested the presence of a bacteriocin inducing factor in the sensitive strain. The inducing factor was localized in the cell debris and intracellular fraction of B. subtilis ATCC6633. Bacteriocin BSCX1 inducing factor was found to be highly stable in the pH range 2.5-9.5, but inactivated within 3h over $50^{\circ}C$, and treatment with proteinase K destroyed its inducing activity, this result suggested that the inducing factor should be a proteinaceous nature.

박테리오신 BSCX1은 Bacillus subtilis cx1에 의해 생산되는 항균성 peptide이다. B. subtilis cx1의 박테리오신(BSCX1)은 Bacilius subtilis ATCC6633, Listeria monocytogenes KCTC3569를 포함한 그람양성균과 Salmonella typhi ATCC19430, Escherichia coli ATCC25922와 같은 그람음성균에 대해서도 비교적 넓은 항균활성 범위를 가진다. 박테리오신 생산균주인 B. subtilis cx1과 그것의 감수성 균주인 B. subtilis ATCC6633을 공동 배양한 결과, 박테리오신 BSCX1의 생산이 증가됨을 확인할 수 있다. 이 결과는 박테리오신 생산균주 B. subtilis cx1의 성장 배지내에 박테리오신 감수성 균주가 존재함이 BSCX1 생산을 촉진시키는 것을 의미한다. 감수성 균주의 박테리오신 유도 작용을 확인하였으므로 유도물질이 감수성 균주의 어느 위치에 존재하는지 밝히기 위해 B. subtilis ATCC6633을 분획하여 실험한 결과 세포내 분획과 세포파쇄물에 모두 유도물질이 존재함을 확인하였다. BSCX1 유도물질의 유도활성은 pH 2.5에서 pH 9.5에 걸쳐 전 구간에서 유지되었으며, $50^{\circ}C$이상에서는 3시간 이내에 불활성화 되었다. 유도물질에 단백분해효소인 proteinase K를 처리한 결과 유도활성이 사라져 단백질성 물질임을 알 수 있었다.

Keywords

References

  1. Anderssen, E. L., D. B. Diep, J. F. Nes, V. G. H. Eijsink, and J. Nissen-Meyer. 1998. Antagonistic activity of Lactobacillus plantarum C11: two new-peptide bacteriocins, plantaricin EF and JK and the induction factor plantaricin A. Appl. Environ. Microbiol. 64: 2269-2272
  2. Antonio, M., J. Rufino, and R. Jose Luis. 2004. Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive. Arch. Microbiol. 181: 8-16 https://doi.org/10.1007/s00203-003-0606-8
  3. Barefoot, S. F., Y. R. Chen, T. A. Bodine, M. Y. Shearer, and M. D. Hughes. 1994. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin Lactacin B. Appl. Environ. Microbiol. 60: 3522-3528
  4. Biswas, S. R., P. Ray, M. C. Johnson, and B. Ray. 1991. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57: 1265-1267
  5. de Vuyst, L., R. Calleweart, and K. Crabbe. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142: 817-827 https://doi.org/10.1099/00221287-142-4-817
  6. Diep, D. B., L. S. Havarsein, and I. F. Nes. 1995. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol. 18: 631-639 https://doi.org/10.1111/j.1365-2958.1995.mmi_18040631.x
  7. Eijsink, V. G. H., M. B. Brurberg, P. H. Middelhoven, and I. H. Nes. 1996. Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178: 2232-2237
  8. Franz, C. M. A. P., M. E. Stiles, and M. J. Belkum. 2000. Simple method to identify bacteriocin induction peptides and to auto-induce bacteriocin production at low cell density. FEMS Microbiol. Lett. 186: 81-185
  9. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocin of gram-positive bacteria. Microbiol. Rev. 59: 171-200
  10. Junttila, J., S. E. Niemela, and J. Hirn. 1988. Minimum growth temperatures of Listeria monocytogenes and mom hemolytic listeria. J. Appl. Bacteriol. 65: 321-327
  11. Kim, S. I., I. C. Kim, and H. C. Chang. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Kor. Soc. Food Sci. Nutr. 28: 526-533
  12. Kim, S. I., J. Y. Chang, I. C. Kim, and H. C. Chang. 2001. Characterization of bacteriocin from Bacillus subtilis cx1. Kor. J. Appl. Microbiol. Biotechnol. 29: 50-55
  13. Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: a case of multicellular behavior. Peptide 22: 1579-1596 https://doi.org/10.1016/S0196-9781(01)00493-4
  14. Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lanthibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303
  15. Klein, C. and K. D. Entian. 1994. Gene involved in self protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC6633. Appl. Environ. Microbiol. 60: 2793-2801
  16. Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, E. J. Luesink, and W. M. de Vos. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299-27304 https://doi.org/10.1074/jbc.270.45.27299
  17. Kuiper, O. P., P. G. de Ruyter, M. Kleerebezem, and W. M. de Vos. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. J. Bacteriol. 64: 15-21
  18. Lars, A. and A. Holck. 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177: 2125-2137
  19. Lee, K. H., H. M. Kwon, C. H. Hong, and S. G. Park. 1999. Characterization of salmonella species isolated from poultry slaughterhouse and pork meat processing plants. J. Food Hyg. Safety 14: 97-103
  20. Lee, S. H. and Y. S. Lim. 1997. Antimicrobial effects of schizandra chinensis extract against Listeria monocytogenes. Kor. J. Appl. Microbiol. Biotechnol. 25: 442-447
  21. Mah, J. H., K. S. Kim, J. H. Park, M. W. Byun, Y. B. Kim, and H. J. Hwang. 2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp. isolated from kimchi. J. Microbiol. Biotechnol. 11: 577-584
  22. Moll, G. N., G. C. K. Roberts, W. N. Konings, and A. J. M. Driessen. 1996. Mechanism of lantibiotic-induced poreformation. Antonie van Leeuwenhoek 69: 185-191 https://doi.org/10.1007/BF00399423
  23. Nislen, T., I. F. Nes, and H. Holo. 1998. An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J. Bacteriol. 180: 1848-1854
  24. Paik, H. D., N. K. Lee, K. H. Lee, Y. I. Hwang, and J. G. Pan. 2000. Identification and partial characterization of cerein BS229, a bacteriocin produced by Bacillus cereus BS229. J. Microbiol. Biotechnol. 10: 195-200
  25. Park, S. Y., Y. J. Yang, Y. B. Kim, J. H. Hong, and C. Lee. 2002. Characterization of subtilein, a bacteriocin from Bacillus subtilis CAU131(KCCM 10257). J. Microbiol. Biotechnol. 12: 228-234
  26. Reichmnn, P. and R. Hakenbeck. 2000. Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol. Lett. 190: 231-236 https://doi.org/10.1111/j.1574-6968.2000.tb09291.x
  27. Sip, A., W. Grajek, and P. Boyaval. 1998. Enhancement of bacteriocin production by Carnobacterium divergens AS7 in the presence of a bacteriocin-sensitive strain Carnobacterium piscicola. Int. J. Food Microbiol. 42: 63-69 https://doi.org/10.1016/S0168-1605(98)00062-2
  28. Vincent, G. H. E., M. B. Brurberg, P. H. Middelhoven, and I. F. Nes. 1996. Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178: 2232-2237
  29. Wood, K. V. and M. Woodbine. 1979. Low temperature virulence of Listeria monocytogenes in the avian embryo. Zbi. Bakteriol. hyg. I. Abt. Orig. A243: 74-81
  30. Yang, E. J., J. Y. Chang, H. J. Lee, J. H. Kim, D. K. Chung, J. H. Lee, and H. C. Chang. 2002. Characterization of the antagonistic activity against Lactobacillus plantarum and induction of bacteriocin production. Kor. J. Food Sci. Technol. 34: 311-318