Optimization of Conditions for the Double Layer Microencapsulation of Lactic Acid Bacteria

유산균 함유 이중층 미세캡슐화를 위한 조건 최적화

  • Park, Byung-Gye (Department of Food Science and Technology, Seoul National University of Techonology) ;
  • Lee, Jong-Hyuk (Department of Food Science and Technology, Seoul National University of Techonology) ;
  • Shin, Hye-Kyoung (Department of Food Science and Technology, Seoul National University of Techonology) ;
  • Lee, Jae-Hwan (Department of Food Science and Technology, Seoul National University of Techonology) ;
  • Chang, Phan-Shik (Department of Food Science and Technology, Seoul National University of Techonology)
  • 박병규 (서울산업대학교 식품공학과) ;
  • 이종혁 (서울산업대학교 식품공학과) ;
  • 신혜경 (서울산업대학교 식품공학과) ;
  • 이재환 (서울산업대학교 식품공학과) ;
  • 장판식 (서울산업대학교 식품공학과)
  • Published : 2006.12.31

Abstract

In this study, we sought to produce a double layer microcapsule containing Lactobacillus sp. as the core material. The conditions for this microencapsulation process were optimized for the formation of a microcapsule with high storage stability. The effects of the ratio of[core material] to [wall material], the type and concentration of emulsifier used, the stirring rate(dispersibility) and the temperature of the dispersion fluid on the microencapsulation yield were studied. The optimal concentration and type of emulsifier required in order to allow for the stable formation of a W/O type emulsion (a primary process in double layer microencapsulation) were 1.00% (w/w) and polyglycerol polyricinileate (PGPR, HLB 0.6). However, the optimal concentration and type of emulsifier required to construct a W/O/W type emulsion (a secondary process in double layer microencapsulation), were 0.65% (w/w) and polyoxyethylene sorbitan monolaurate (PSML, HLB 16.7). Finally, we obtained a maximum yield of microencapsulation with a dispersion fluid stirring rate of 270rpm and a dispersion fluid temperature of 10$^{\circ}C$ after spraying a W/O/W type emulsion into the dispersion fluid.

유산균의 일종인 Lactobacillus sp.을 중심물질로 하고 그 바깥을 2중층으로 미세캡슐화하는 공정을 위한 최적 조건을 확립하였는데, [중심물질]과 [피복물질]의 혼합비율과 유화제 첨가농도, 2중층 유화계내의 2종류 유화제(PGPR/PSML)에 의한 상승효과, 분산액의 온도 및 분산액의 교반속도가 유산균함유 2중층 미세캡슐화 수율에 미치는 영향을 검토하였다. W/O형 및 W/O/W형 유화계내에서의 중심물질과 피복물질의 혼합비율과 유화제 첨가농도에 다른 최적조건을 탐색한 결과, Lactobacillus sp.(Cm)와 옥배경화유(Wm)와의 혼합비율이 [W/O형 Cm]:[W/O형 Wm]=3:2(w/w), 1.00%의 유화제(PGPR) 첨가농도에서 최대의 수율을 나타내었으며, 유산균을 옥배경화유가 단일층으로 둘러싼 W/O형 유화계와 다당류 호화액의 혼합비율 즉, [W/O/W형 중심물질, CM]:[W/O/W형 피복물질, WM]=1:3(w/w) 0.65%의 유화제(PSML) 농도에서 가장 높은 미세캡슐화 수율을 얻을 수 있은 것으로 판명되었다. 최종적으로, 유산균 2중층 미세캡슐화 공정을 위한 여러 가지 요인들 중 물리적인 조건의 변화를 살펴본 결과, 분산매의 온도가 10$^{\circ}C$이며, 미세캡슐을 함유하는 분산액 제조시의 교반정도가 270rpm일 때 2중 미세캡슐화의 가장 높은 수율을 확인 할 수 있다.

Keywords

References

  1. Cho YE, Shin DS, Park JY. Microencapsulation technology in food industry. Food Sci. Ind. 30: 98-111 (1997)
  2. Lee SC, Im CH, Lee Sc. Characteristics of spray dried polysaccharide for microencapsulation. Korean J. Food Sci. Technol. 29: 1322-1326 (1997)
  3. Kim CH, Lee KW, Kwak HS, Kang OJ. Studies on the microencapsulation of ${\omega}$-3 polyunsaturated fatty acid. Korean J. Food Sci. Technol. 28: 743-749 (1996)
  4. Hyndman CL, Groboillot AF, Poncelet D, Champagne CP, Neufeld RJ. Microencapsulation of Lactococus lactis within cross linked gelatin membrans. J. Chem. Technol. Biotechnol. 56: 259-263 (1993)
  5. Arshady R. Microcapsules for food. J. Microencapsul. 10: 413-435 (1975) https://doi.org/10.3109/02652049309015320
  6. Bakan JA. Microencapsulation of foods and related products. Food Technol. 27: 34-40 (1985)
  7. Deasy PB, Microencapsulation and Related Drug Processes. Marcel Dekker. Inc., New York, NY, USA. pp. 26-35 (1984)
  8. Jackson LS, Lee. K. Microencapsulated iron for food fortification. J. Food Sci. 56: 1047-1050 (1991) https://doi.org/10.1111/j.1365-2621.1991.tb14638.x
  9. Dziezak JD. Microencapsulation and encapsulated ingredient. Food Technol. 42: 136-151 (1988)
  10. Cordray JC, Huffman DL. Restructured pork form hot processed sow meat: Effect of encapsulated food acids. J. Food Prot. 48: 965-968 (1985) https://doi.org/10.4315/0362-028X-48.11.965
  11. Magee EL, Olson NF, Lindsay RC. Microencapsulation of cheese ripening system: Production of diacetyl and aceton in cheese by encapsulated bacterial cell-free extract. J. Dairy Sci. 64: 616-621 (1981) https://doi.org/10.3168/jds.S0022-0302(81)82620-3
  12. Chilvers GR, Gunning AP, Morris VJ. Coacervation of gelatin-XM6 mixture and their use in microencapsulation. Carbohydr. Polym. 8: 55-61 (1988) https://doi.org/10.1016/0144-8617(88)90036-7
  13. Iso M, Masumoto H, Urushiyama S, Omi S. Application of encapsulated enzyme dispersed in a continuous stirred tank reactor. J. Microencapsul. 7: 167-177 (1990) https://doi.org/10.3109/02652049009021829
  14. Baik OR, Uy R, Byun SM. Hydrolysis of lactose in milk by microencapsulation of ${\beta}$-galactosidase. Korean. J. Food Sci. Technol. 12(1): 45-52 (1980)
  15. Shin MG, Chang PS, Min BK, Kwak HS. Quantitative analysis of microencapsulation of ${\beta}$-galactosidase. Korean. J. Anal. Sci. 5: 471-475 (1992)
  16. Morichi T. Preservation of lactic acid bacteria by freeze-drying. Jpn. Agric. Res. Quart. 8: 171-176 (1974)
  17. Deeth HC. Yoghurt and cultures products. Aus. J. Dairy Technol. 39: 111-113 (1984)
  18. Chang PS. Determination of emulsion stability index in W/O emulsion. Anal. Sci. Technol. 7: 233-236 (1994)
  19. Tharwat FT, Brian V. Emulsion stability. Vol. I, pp. 129-286. In: Encyclopedia of Emulsion Technology. Paul B (ed). Marcel Dekker. Inc., New York, NY, USA (1983)
  20. Chang PS. Microencapsulation and oxidative stability of docosahexaenoic acid. Am. Chem. Soc. Symp. 674: 264-274 (1997)