KYUNGPOOK Math. J. 46(2006), 255-260

General Linear Group over a Ring of Integers of Modulo k

Juncheol Han
Department of Mathematics Education, Pusan National University, Pusan 609-735, Korea
e-mail: jchan@pusan.ac.kr

Abstract. Let m and k be any positive integers, let \mathbb{Z}_{k} the ring of integers of modulo k, let $G_{m}\left(\mathbb{Z}_{k}\right)$ the group of all m by m nonsingular matrices over \mathbb{Z}_{k} and let $\phi_{m}(k)$ the order of $G_{m}\left(\mathbb{Z}_{k}\right)$. In this paper, $\phi_{m}(k)$ can be computed by the following investigation: First, for any relatively prime positive integers s and $t, G_{m}\left(\mathbb{Z}_{s t}\right)$ is isomorphic to $G_{m}\left(\mathbb{Z}_{s}\right) \times$ $G_{m}\left(\mathbb{Z}_{t}\right)$. Secondly, for any positive integer n and any prime $p, \phi_{m}\left(p^{n}\right)=p^{m^{2}} \cdot \phi_{m}\left(p^{n-1}\right)=$ $p^{2 m^{2}} \cdot \phi_{m}\left(p^{n-2}\right)=\cdots=p^{(n-1) m^{2}} \cdot \phi_{m}(p)$, and so $\phi_{m}(k)=\phi_{m}\left(p_{1}^{n_{1}}\right) \cdot \phi_{m}\left(p_{2}^{n_{2}}\right) \cdots \phi_{m}\left(p_{s}^{n_{s}}\right)$ for the prime factorization of $k, k=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{s}^{n_{s}}$.

1. Introduction

For any positive integers m and k, let \mathbb{Z} (resp. $\left.\mathbb{Z}_{k}=\{0,1, \cdots, k-1\}\right)$ be the ring of all integers (resp. the ring of integers under addition and multiplication modulo $k)$ and let $M_{m}(\mathbb{Z})\left(\right.$ resp. $\left.M_{m}\left(\mathbb{Z}_{k}\right)\right)$ the ring of all m by m matrices over \mathbb{Z} (resp. the ring of all m by m matrices over \mathbb{Z}_{k}). Recall that the set of all m by m nonsingular matrices over $\mathbb{Z}\left(\right.$ resp. $\left.\mathbb{Z}_{k}\right)$ forms a group under the matrix multiplication (called the general linear group of degree m over $\mathbb{Z}\left(\right.$ resp. $\left.\left.\mathbb{Z}_{k}\right)\right)$. We will denote this group by $G_{m}(\mathbb{Z})$ (resp. $\left.G_{m}\left(\mathbb{Z}_{k}\right)\right)$. Also we can note that the set of all m by m matrices in $M_{m}(\mathbb{Z})$ (resp. $\left.M_{m}\left(\mathbb{Z}_{k}\right)\right)$ with the determinant 1 forms a normal subgroup of $G_{m}(\mathbb{Z})$ (resp. $\left.G_{m}\left(\mathbb{Z}_{k}\right)\right)$ (called the special linear group of degree m over \mathbb{Z} (resp. \mathbb{Z}_{k})) and denoted by $S_{m}(\mathbb{Z})$ (resp. $S_{m}\left(\mathbb{Z}_{k}\right)$). Note that $A \in M_{m}\left(\mathbb{Z}_{k}\right)$ is nonsingular if and only if the determinant of $A \in M_{m}\left(\mathbb{Z}_{k}\right)$ is relatively prime to k. We will denote the determinant of $A \in M_{m}(\mathbb{Z})$ (or $M_{m}\left(\mathbb{Z}_{k}\right)$) by $|A|$.

Consider the following relation \equiv_{m} defined on $M_{m}(\mathbb{Z})$: For any $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right] \in M_{m}(\mathbb{Z}), A \equiv_{m} B(\bmod k)($ we read this A is congruent to B modulo $k)$ if $a_{i j} \equiv b_{i j}$ (modulo k) (i.e., $a_{i j}-b_{i j}$ is divided by k) for all $i, j=1,2, \cdots, m$. Observe that the congruence relation \equiv_{m} is an equivalence relation on $M_{m}(\mathbb{Z})$ satisfying the following properties:

Received November 23, 2004.
2000 Mathematics Subject Classification: 11C20, 15A36.
Key words and phrases: $\mathbb{Z}_{k}(=$ the ring of integers of modulo k), general linear group of degree m over \mathbb{Z}_{k}, special linear group of degree m over \mathbb{Z}_{k}, congruence relation $\equiv m$, order of group.

This work was supported by Pusan National University Research Grant.
(1) For any A, B, C and $D \in M_{m}(\mathbb{Z})$ such that $A \equiv_{m} B(\bmod k)$ and $C \equiv_{m}$ $D(\bmod k), A+C \equiv_{m} B+D(\bmod k)$.
(2) For any A, B, C and $D \in M_{m}(\mathbb{Z})$ such that $A \equiv_{m} B(\bmod k)$ and $C \equiv_{m}$ $D(\bmod k), A C \equiv_{m} B D(\bmod k)$. In particular, $A^{s} \equiv_{m} B^{s}(\bmod k)$ for all positive integers s.
(3) For any $A \in M_{m}(\mathbb{Z})$, there exists a unique element $A_{0} \in M_{m}\left(\mathbb{Z}_{k}\right)$ such that $A \equiv{ }_{m} A_{0}(\bmod k)$.
(4) For any $A \in G_{m}(\mathbb{Z})$, there exists a unique element $A_{0} \in G_{m}\left(\mathbb{Z}_{k}\right)$ such that $A \equiv{ }_{m} A_{0}(\bmod k)$.
We begin with the following Lemmas.
Lemma 1.1. Let $A, B \in M_{m}(\mathbb{Z})$ such that $A \equiv_{m} B(\bmod k)$. Then $|A| \equiv$ $|B|(\bmod k)$.
Proof. It follows from the definition of the congruence \equiv_{m}.
Note that the converse is not true.
Example 1. Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in M_{2}(\mathbb{Z})$. Then $|A| \equiv|B|(\bmod 2)$, but A is not congruent to B modulo 2 .

Throughout this paper, we will denote the greatest common divisor of any two positive integers s, t by $\operatorname{gcd}(s, t)$ (or simply (s, t)).
Lemma 1.2. Let a and b be any integers and k be any positive integer. If $a \equiv$ $b(\bmod k)$, then $(a, k)=(b, k)$.
Proof. Clear.
We can note that for any positive integers m and $n(n \geq 2)$ and any prime $p, G_{m}\left(\mathbb{Z}_{p^{n}}\right)$ contains $G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$ properly in the sense of set inclusion. Indeed, if $A \in G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$, then $\left(|A|, p^{n-1}\right)=1$, and so $\left(|A|, p^{n}\right)=1$, which implies $A \in G_{m}\left(\mathbb{Z}_{p^{n}}\right)$. For a diagonal matrix $D=\left[d_{i j}\right] \in G_{m}\left(\mathbb{Z}_{p^{n}}\right)$ such that $d_{i i}=p^{n}$ 1 for all $i=1,2, \cdots, m, D \notin G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$. Hence $G_{m}\left(\mathbb{Z}_{p^{n}}\right) \supset G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$, but $G_{m}\left(\mathbb{Z}_{p^{n}}\right) \neq G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$. On the other hand, the subset $G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$ of $G_{m}\left(\mathbb{Z}_{p^{n}}\right)$ can not form a subgroup in $G_{m}\left(\mathbb{Z}_{p^{n}}\right)$ by the following example.
Example 2. Let $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right) \in G_{2}\left(\mathbb{Z}_{3}\right)\left(\subset G_{2}\left(\mathbb{Z}_{9}\right)\right)$. Then $A^{3}=\left(\begin{array}{ll}8 & 7 \\ 0 & 1\end{array}\right) \in$ $G_{2}\left(\mathbb{Z}_{9}\right) \backslash G_{2}\left(\mathbb{Z}_{3}\right)$. But $A^{3}=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right) \in G_{2}\left(\mathbb{Z}_{3}\right)$.
Theorem 1.3. Let m be any positive integer. If any two positive integers s and t are relatively prime, then $G_{m}\left(\mathbb{Z}_{s t}\right)$ is isomorphic to $G_{m}\left(\mathbb{Z}_{s}\right) \times G_{m}\left(\mathbb{Z}_{t}\right)$.
Proof. Define $\psi: G_{m}\left(\mathbb{Z}_{s t}\right) \rightarrow G_{m}\left(\mathbb{Z}_{s}\right) \times G_{m}\left(\mathbb{Z}_{t}\right)$ by $\psi(A)=(B, C)$ where $A \equiv_{m} B$ $(\bmod s)$ and $A \equiv_{m} C(\bmod t)$. Then ψ is well-defined. Indeed, let $A \in G_{m}\left(\mathbb{Z}_{s t}\right)$
be arbitrary. Then $(|A|, s t)=1$. Since $(s, t)=1,(|A|, s)=(|A|, t)=1$. Since $A \equiv_{m} B(\bmod s)$ and $(|A|, s)=1,(|B|, s)=1$ by Lemma 1.1 and Lemma 1.2, and so $B \in G_{m}\left(\mathbb{Z}_{s}\right)$. Similarly, we can have $C \in G_{m}\left(\mathbb{Z}_{t}\right)$. By using the definition of congruence \equiv_{m}, we can easily show that ψ is a group homomorphism. Next, to prove ψ is onto, let $\left(B=\left[b_{i j}\right], C=\left[c_{i j}\right]\right) \in G_{m}\left(\mathbb{Z}_{s}\right) \times G_{m}\left(\mathbb{Z}_{t}\right)$ be arbitrary. Consider the following equations: for all $i, j=1, \cdots, m$,

$$
x_{i j} \equiv b_{i j}(\bmod s), \quad x_{i j} \equiv c_{i j}(\bmod t)
$$

Since $(s, t)=1$, the equations have the unique solution $a_{i j} \in M_{m}\left(\mathbb{Z}_{s t}\right)$ for all $i, j=$ $1, \cdots, m$ by the Chinese Remainder Theorem [1, page 75]. Let $A=\left[a_{i j}\right] \in M_{m}\left(\mathbb{Z}_{s t}\right)$. Then $A \equiv_{m} B(\bmod s)$ and $A \equiv_{m} C(\bmod t)$. Since $B \in G_{m}\left(\mathbb{Z}_{s}\right),(|B|, s)=1$. Since $A \equiv_{m} B(\bmod s),(|A|, s)=1$ by Lemma 1.2. By the similar argument, we can have $(|B|, t)=1$. Since $(s, t)=1,(|A|, s t)=1$, and so $A \in G_{m}\left(\mathbb{Z}_{s t}\right)$. Finally, we will show that ψ is one-one. Consider $\operatorname{ker}(\psi)=\left\{A=\left[a_{i j}\right] \in G_{m} \mathbb{Z}_{s t}\right): A \equiv_{m} I_{m}$ $\left.(\bmod s), A \equiv_{m} I_{m}(\bmod t)\right\}$. Let $A=\left[a_{i j}\right] \in \operatorname{ker}(\psi)$. Then for all $i, j=1, \cdots, m$, $a_{i j}$ is the solution of following equations:

$$
\begin{aligned}
x_{i i} \equiv 1(\bmod s), & x_{i i} \equiv 1(\bmod t) \\
x_{i j} \equiv 0(\bmod s), & x_{i j} \equiv 0(\bmod t)(i \neq j)
\end{aligned}
$$

On the other hand, by the Chinese Remainder Theorem both the equations have unique solutions in $\mathbb{Z}_{s t}, x_{i i}=1$ for all $i=1, \cdots, m$ and $x_{i j}=0$ for all $i, j=1, \cdots, m$ and $i \neq j$. Hence $\operatorname{ker}(\phi)=\left\{I_{m}\right\}$, and so ψ is one-one. Consequently, ψ is an isomorphism, and thus we have the result.

Corollary 1.4. Let m and k be any positive integers. If $p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{s}^{n_{s}}$ be the prime factorization of k, then $G_{m}\left(\mathbb{Z}_{k}\right)$ is isomorphic to $G_{m}\left(\mathbb{Z}_{p_{1}^{n_{1}}}\right) \times G_{m}\left(\mathbb{Z}_{p_{2}^{n_{2}}}\right) \times$ $\cdots \times G_{m}\left(\mathbb{Z}_{p_{s}^{n_{s}}}\right)$.
Proof. It follows from Theorem 1.3 and induction on s.

2. The order of $G_{m}\left(Z_{k}\right)$

Let $\phi_{m}(k)$ be the order of $G_{m}\left(\mathbb{Z}_{k}\right)$. In particular, if $m=1$, then $\phi_{1}(k)$ is the Euler-Phi number of k, the number of elements of \mathbb{Z}_{k} which are relatively prime to k. Recall that for any positive integer n and any prime $p, \phi_{1}\left(p^{n}\right)=p^{n}-p^{n-1}=$ $p \cdot \phi_{1}\left(p^{n-1}\right)$, and for any two relatively primes s and $t, \phi_{1}(s t)=\phi_{1}(s) \cdot \phi_{1}(t)$. Let I_{m} (resp. $I_{m, k}$) be the identity of the group $G_{m}(\mathbb{Z})$ (resp. $G_{m}\left(\mathbb{Z}_{k}\right)$). If there is no confusion, we can let $I_{m}=I_{m, k}$ for the convenience of notation. From the properties of the congruence \equiv_{m}, we can have the following Theorem.

Theorem 2.1. Let k be any positive integer and let $A \in M_{m}(\mathbb{Z})$ be arbitrary. If $|A|$ is relatively prime to k, then $A^{\phi_{m}(k)} \equiv_{m} I_{m}(\bmod k)$.
Proof. For any $A \in M_{m}(\mathbb{Z})$, there exists a unique element $A_{0} \in M_{m}\left(\mathbb{Z}_{k}\right)$ such that $A \equiv{ }_{m} A_{0}(\bmod k)$ by the property $[3]$ of the congruence \equiv_{m}. By Lemma 1.1, $|A| \equiv$ $\left|A_{0}\right|(\bmod k)$. Since $|A|$ is relatively prime to $k, A_{0} \in G_{m}\left(\mathbb{Z}_{k}\right)$ by Lemma 1.2. Hence $A_{0}{ }^{\phi_{m}(k)} \equiv_{m} I_{m}(\bmod k)$. Also by the property [2] of the congruence $\equiv_{m}, A^{\phi_{m}(k)}$ $\equiv{ }_{m} A_{0}{ }^{\phi_{m}(k)}(\bmod k)$. Hence we have $A^{\phi_{m}(k)} \equiv_{m} I_{m}(\bmod k)$.

Note that Theorem 2.1 extends Euler's Theorem stated as follows.
Euler's Theorem. Let a and k be any positive integers. If a is relatively prime to k, then $a^{\phi(k)} \equiv 1(\bmod k)$.

Lemma 2.2. Let m and $n(n \geq 2)$ be any positive integers and let p be any prime. If $A \in G_{m}\left(\mathbb{Z}_{p^{n}}\right)$ and $A_{0} \in M_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$ such that $A \equiv_{m} A_{0}\left(\bmod p^{n-1}\right)$, then $A_{0} \in G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$.
Proof. If $A \in G_{m}\left(\mathbb{Z}_{p^{n}}\right)$, then $\left(|A|, p^{n}\right)=1$, and so $\left(|A|, p^{n-1}\right)=1$. By Lemma 1.1 and Lemma 1.2, $\left(\left|A_{0}\right|, p^{n-1}\right)=1$, and so $A_{0} \in G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$.
Theorem 2.3. Let m and $n(n \geq 2)$ be any positive integers and let p be any prime. Then
(1) there exists a normal subgroup H of $G_{m}\left(\mathbb{Z}_{p^{n}}\right)$ such that $G_{m}\left(\mathbb{Z}_{p^{n}}\right) / H$ is isomorphic to $G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$;
(2) $\phi_{m}\left(p^{n}\right)=p^{m^{2}} \phi_{m}\left(p^{n-1}\right)$;
(3) $\phi_{m}\left(p^{n}\right)=p^{m^{2}} \cdot \phi_{m}\left(p^{n-1}\right)=p^{2 m^{2}} \cdot \phi_{m}\left(p^{n-2}\right)=\cdots=p^{(n-1) m^{2}} \cdot \phi_{m}(p)$, where $\phi_{m}(p)=\left(p^{m}-1\right)\left(p^{m}-p\right) \cdots\left(p^{m}-p^{m-1}\right)$.

Proof. (1) Define $\theta: G_{m}\left(\mathbb{Z}_{p^{n}}\right) \rightarrow G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$ by $\theta(A)=A_{0}$, where $A \equiv_{m} A_{0}$ $\left(\bmod p^{n-1}\right)$ for all $A \in G_{m}\left(\mathbb{Z}_{p^{n}}\right)$. Then θ is well-defined by Lemma 2.2. It is easy to show that θ is a group homomorphism. Next, we will show that θ is onto. Let $A_{0} \in G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$ be arbitrary. Then we can choose $A \in M_{m}\left(\mathbb{Z}_{p^{n}}\right)$ such that $A \equiv{ }_{m} A_{0}\left(\bmod p^{n-1}\right)$. Indeed, for $A_{0} \in G_{m}\left(\mathbb{Z}_{p^{n-1}}\right)$ there exists $B \in M_{m}(\mathbb{Z})$ such that $B \equiv_{m} A_{0}\left(\bmod p^{n-1}\right)$. By the property $[3]$ of congruence \equiv_{m}, there exists $A \in M_{m}\left(p^{n}\right)$ such that $B \equiv_{m} A\left(\bmod p^{n}\right)$, and then $B \equiv_{m} A\left(\bmod p^{n-1}\right)$. Therefore $A \equiv_{m} A_{0}\left(\bmod p^{n-1}\right)$. Since $A_{0} \in G_{m}\left(\mathbb{Z}_{p^{n-1}}\right),\left(\left|A_{0}\right|, p^{n-1}\right)=1$, and so $\left(\left|A_{0}\right|, p^{n}\right)=$ 1. By Lemma 1.1 and Lemma $1.2,\left(|A|, p^{n}\right)=1$. Thus $A \in G_{m}\left(\mathbb{Z}_{p^{n}}\right)$, which implies that θ is onto. Let $H=\operatorname{ker}(\theta)$. Then $H=\left\{A=\left[a_{i j}\right] \in G_{m}\left(p^{n}\right): a_{i i} \equiv 1(\bmod \right.$ $\left.p^{n-1}\right)$ for all $i=1, \cdots, m$, and $a_{i j} \equiv 0\left(\bmod p^{n-1}\right)$ for all $i, j=1, \cdots, m$ and $i \neq j\}$. By the First Isomorphism Theorem, we can have the result (1).
(2) Note that $A=\left[a_{i j}\right] \in \operatorname{ker}(\theta)$ if and only if $a_{i i}=1,1+2 p^{n-1}, \cdots, 1+$ $(p-1) p^{n-1}$ for all $i=1, \cdots, m$ and $a_{i j}=0,0+2 p^{n-1}, \cdots, 0+(p-1) p^{n-1}$ for all $i, j=1, \cdots, m$ and $i \neq j$. Hence the order of $H=\operatorname{ker}(\theta)$ in (1) is $p^{m^{2}}$ and so $\phi_{m}\left(p^{n}\right)=($ the order of $H) \cdot \phi_{m}\left(p^{n-1}\right)=p^{m^{2}} \cdot \phi_{m}\left(p^{n-1}\right)$ by (1).
(3) By the similar argument given in the proof (1), $\phi_{m}\left(p^{t}\right)=p^{m^{2}} \phi_{m}\left(p^{t-1}\right)$ for all $t=2, \cdots, n$. It is easy to compute $\phi_{m}(p), \phi_{m}(p)=\left(p^{m}-1\right)\left(p^{m}-p\right) \cdots\left(p^{m}-p^{m-1}\right)$. Thus we have the result.

Corollary 2.4. Let m and k be any positive integers. If $p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{s}^{n_{s}}$ be the prime factorization of k, then $\phi_{m}(k)=\phi_{m}\left(p_{1}^{n_{1}}\right) \cdot \phi_{m}\left(p_{2}^{n_{2}}\right) \cdots \phi_{m}\left(p_{s}^{n_{s}}\right)$.
Proof. It follows from Corollary 1.4 and Theorem 2.3.

Example 3. $\phi_{2}(2)=6, \phi_{2}(4)=96, \phi_{2}(8)=1536, \phi_{2}(3)=48, \phi_{2}(27)=314928$, $\cdots, \phi_{3}(2940)=19,599,001,939,501,921,063,850,213,376,000$, etc.

Observe that for all $i=1,2, \cdots, m-1,\left(\begin{array}{cc}G_{i}\left(\mathbb{Z}_{k}\right) & 0_{1} \\ 0_{2} & I\end{array}\right)$ is a subgroup of $G_{m}\left(\mathbb{Z}_{k}\right)$ which is isomorphic to $G_{i}\left(\mathbb{Z}_{k}\right)$ where 0_{1} is i by $m-i$ zero matrix, 0_{2} is $m-i$ by i zero matrix and I is $m-i$ by $m-i$ identity matrix. Hence $\phi_{i}(k)$ is a divisor of $\phi_{m}(k)$. In fact, for the prime factorization of $k, p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{s}^{n_{s}}$, it is easily computed that for each $j=1,2, \cdots, s$,

$$
\begin{gathered}
\phi_{m}\left(p_{j}^{n_{j}}\right)=p_{j}^{\left(n_{j}-1\right)\left(m^{2}-i^{2}\right)} \frac{\phi_{m}\left(p_{j}\right)}{\phi_{i}\left(p_{j}\right)} \phi_{i}\left(p_{j}^{n_{j}}\right), \\
\frac{\phi_{m}\left(p_{j}\right)}{\phi_{i}\left(p_{j}\right)}=\left(p_{j}^{m}-1\right)\left(p_{j}^{m}-p_{j}\right) \cdots\left(p_{j}^{m}-p_{j}^{m-i-1}\right) p_{j}^{i(m-i)} \phi_{i}\left(p_{j}\right)
\end{gathered}
$$

Recall the special linear group of degree m over $\mathbb{Z}_{k}, S_{m}\left(\mathbb{Z}_{k}\right)=\left\{A \in G_{m}\left(\mathbb{Z}_{k}\right)\right.$: $|A| \equiv 1(\bmod k)\}$, is the normal subgroup of $G_{m}\left(\mathbb{Z}_{k}\right)$.

Lemma 2.5. Let m and k be any positive integers. Then $G_{m}\left(\mathbb{Z}_{k}\right) / S_{m}\left(\mathbb{Z}_{k}\right)$ is isomorphic to $G_{1}\left(\mathbb{Z}_{k}\right)$.
Proof. Define a map $\theta: G_{m}\left(\mathbb{Z}_{k}\right) \rightarrow G_{1}\left(\mathbb{Z}_{k}\right)$ by $\theta(A)=|A|(\bmod k)$. Then θ is a well-defined map. It is easy to show that θ is a group homomorphism and is onto. Note that $\operatorname{ker}(\theta)$ is $S_{m}\left(\mathbb{Z}_{k}\right)$. By the First Isomorphism Theorem, $G_{m}\left(\mathbb{Z}_{k}\right) / S_{m}\left(\mathbb{Z}_{k}\right)$ is isomorphic to $G_{1}\left(\mathbb{Z}_{k}\right)$.

From the above Lemma, we have that $\left|S_{m}\left(\mathbb{Z}_{k}\right)\right|=\frac{\phi_{m}(k)}{\phi_{1}(k)}$.
Corollary 2.6. Let m and k be any positive integers and let $S_{t}=\left\{B \in G_{m}\left(\mathbb{Z}_{k}\right)\right.$: $|B| \equiv t(\bmod k)\}$. Then $S_{t}=A S_{m}\left(\mathbb{Z}_{k}\right)=\left\{A C \in G_{m}\left(\mathbb{Z}_{k}\right): C \in S_{m}\left(\mathbb{Z}_{k}\right)\right\}$ for any $A \in G_{m}\left(\mathbb{Z}_{k}\right)$ such that $|A| \equiv t(\bmod k)$, i.e., S_{t} is a left coset of $S_{m}\left(\mathbb{Z}_{k}\right)$ containing $A \in G_{m}\left(\mathbb{Z}_{k}\right)$.
Proof. It is clear by Lemma 2.5.
From the above Corollary, we have that for any s and $t \in G_{1}\left(\mathbb{Z}_{k}\right),\left|S_{s}\right|=\left|S_{t}\right|$.

3. Some application to number theory

Recall that an integer g is said to be a primitive root modulo k if the order of g modulo k is $\phi_{1}(k)$. In [1, pp 172-173], the following theorem is given:

Theorem 3.1. An integer $k \geq 2$ has a primitive root modulo k if and only if k is one of the following: 2, 4, $p^{t}, 2 p^{t}$, where p is an odd prime and t an arbitrary positive integer.

Observe that g is a primitive root modulo k if and only if $G_{1}\left(\mathbb{Z}_{k}\right)$ is a cyclic group with a generator a where $g \equiv a(\bmod k)$. In this section, we will illustrate another proof of Theorem 3.1 by using the results obtained in section 1 and section 2.

Lemma 3.2. $G_{1}\left(\mathbb{Z}_{2^{n}}\right)$ is not a cyclic group for all positive integer $n \geq 3$.

Proof. Let $(1 \neq) g \in G_{1}\left(\mathbb{Z}_{2^{n}}\right)$ be arbitrary for all positive integer $n \geq 3$. Then $g=1+4 t$ or $g=-1+4 t$ for some $k \geq 1$. It is easily computed that $g^{2^{n-2}} \equiv 1$ $\left(\bmod 2^{n}\right)$. Since the order of $G_{1}\left(\mathbb{Z}_{p^{n}}\right)$ is $2^{n-1}, G_{1}\left(\mathbb{Z}_{p^{n}}\right)$ is not cyclic for all positive integer $n \geq 3$.

Lemma 3.3. $G_{1}\left(\mathbb{Z}_{p^{n}}\right)$ is a cyclic group for any odd prime p and all positive integer n.

Proof. Let p be any odd prime. We will prove it by induction on n. When $n=1$, $G_{1}\left(\mathbb{Z}_{p}\right)$ is clearly a cyclic group. Assume that $G_{1}\left(\mathbb{Z}_{p^{n-1}}\right)$ is a cyclic group. The map $\theta: G_{1}\left(\mathbb{Z}_{p^{n}}\right) \rightarrow G_{1}\left(\mathbb{Z}_{p^{n-1}}\right)$ defined by $\theta(a)=a_{0}$ where $a \equiv a_{0}\left(\bmod p^{n-1}\right)$ for all $a \in G_{1}\left(\mathbb{Z}_{p^{n}}\right)$ is a group homomorphism by the special case $m=1$ in Theorem 2.3. Then by the First Isomorphism Theorem, $G_{1}\left(\mathbb{Z}_{p^{n}}\right) / H$ is isomorphic to $G_{1}\left(\mathbb{Z}_{p^{n-1}}\right)$ where $H=\operatorname{ker}(\theta)$. By assumption, $G_{1}\left(\mathbb{Z}_{p^{n-1}}\right)$ is cyclic and so $G_{1}\left(\mathbb{Z}_{p^{n}}\right) / H$ is cyclic. Hence there exists a generator $g H \in G_{1}\left(\mathbb{Z}_{p^{n}}\right) / H$, and so $g^{\phi\left(p^{n-1}\right)} \in H$ but $g^{t} \notin H$ for all $t<g^{\phi\left(p^{n-1}\right)}$. Observe that $g^{\phi\left(p^{n-1}\right)}$ is not congruent to $1 \bmod p^{n}$. Indeed, if $g^{\phi\left(p^{n-1}\right)} \equiv 1\left(\bmod p^{n}\right)$, then $g^{\phi\left(p^{n}\right)} \equiv g^{\phi\left(p^{n-1}\right)}\left(\bmod p^{n}\right)$. Since g is relatively prime to $p^{n}, g^{p} \equiv 1\left(\bmod p^{n}\right)$, which implies the order of $G_{1}\left(\mathbb{Z}_{p^{n}}\right) / H$ is p, a contradiction. Therefore, $g^{\phi\left(p^{n-1}\right)}$ is not congruent to $1 \bmod p^{n}$. Since H is a cyclic group of order $p, g^{\phi\left(p^{n-1}\right)}$ is a generator of H. Thus the order of $g \in G_{1}\left(\mathbb{Z}_{p^{n}}\right)$ is $\phi\left(p^{n}\right)$, and so $G_{1}\left(\mathbb{Z}_{p^{n}}\right)$ is a cyclic group.

Lemma 3.4. Let G and H be two finite cyclic groups of orders $|G|$ and $|H|$ respectively. Then $G \times H$ is a cyclic group if and only if $|G|$ and $|H|$ are relatively primes.
Proof. Clear.
Hence we can have the proof of the another version of Theorem 3.1 as follows:
Theorem 3.5. For some positive integer $k, G_{1}\left(\mathbb{Z}_{k}\right)$ is a cyclic group if and only if k is one of the following: 2, 4, $p^{t}, 2 p^{t}$, where p is an odd prime and t an arbitrary positive integer.
Proof. From the special case $m=1$ in Corollary 1.4, we have that if $p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{s}^{n_{s}}$ is the prime factorization of any positive integer k, then $G_{1}\left(\mathbb{Z}_{k}\right)$ is isomorphic to $G_{1}\left(\mathbb{Z}_{p_{1}^{n_{1}}}\right) \times G_{1}\left(\mathbb{Z}_{p_{2}^{n_{2}}}\right) \times \cdots \times G_{1}\left(\mathbb{Z}_{p_{s}^{n_{s}}}\right)$. Hence it follows from Lemma 3.2, Lemma 3.3 and Lemma 3.4.

Acknowledgements. The author thanks Professor J. K. Park at Pusan National University for reading this paper and helpful suggestions.

References

[1] R. Kumanduri and C. Romero, Number Theory with Computer Applications, Prentice Hall, New Jersey, INC, 1998.

