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ABSTRACT. Let m and k be any positive integers, let Z the ring of integers of modulo
k, let Gm(Zk) the group of all m by m nonsingular matrices over Z; and let ¢, (k) the
order of G, (Zk). In this paper, ¢m (k) can be computed by the following investigation:
First, for any relatively prime positive integers s and t, G, (Zs¢) is isomorphic to G, (Zs) X
Gm(Zt). Secondly, for any positive integer n and any prime p, ¢m (p™) = pm2 “pm (™) =
P b (P %) = =P (), and $0 G (k) = G (B1Y) - G (B5) -+ b (P
for the prime factorization of k, k = p7* - p52 - - pls.

1. Introduction

For any positive integers m and k, let Z (resp. Zy = {0,1,--- ,k—1}) be the ring
of all integers (resp. the ring of integers under addition and multiplication modulo
k) and let M,,(Z) (resp. M,,(Zy)) the ring of all m by m matrices over Z (resp. the
ring of all m by m matrices over Zj). Recall that the set of all m by m nonsingular
matrices over Z(resp. Zj) forms a group under the matrix multiplication (called
the general linear group of degree m over Z(resp. Zy)). We will denote this group
by Gn(Z) (resp. G (Zy)). Also we can note that the set of all m by m matrices in
M, (Z) (resp. M,,(Zy,)) with the determinant 1 forms a normal subgroup of G, (Z)
(resp. G (Zy)) (called the special linear group of degree m over Z (resp. Zj)) and
denoted by S,,(Z) (resp. Sy (Zy)). Note that A € M,,(Zy) is nonsingular if and
only if the determinant of A € M,,,(Zx) is relatively prime to k. We will denote the
determinant of A € M,,,(Z) (or M,,(Zy)) by |A|.

Consider the following relation =,,, defined on M,,(Z): For any A = [a;;] and
B = [b;j] € M,,(Z), A =,, B(mod k) (we read this A is congruent to B modulo k) if
a;; = b;; (modulo k) (i.e., a;; —b;; is divided by k) for all ¢, j = 1,2,--- ,m. Observe
that the congruence relation =, is an equivalence relation on M,,(Z) satisfying the
following properties:
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(1) For any A,B,C and D € M,,(Z) such that A =,, B(mod k) and C =,
D(mod k), A+ C =, B+ D(mod k).

(2) For any A,B,C and D € M,,(Z) such that A =,, B(mod k) and C =,
D(mod k), AC =,, BD(mod k). In particular, A° =,, B*(mod k) for all
positive integers s.

(3) For any A € M,,(Z), there exists a unique element Ay € M,,(Zx) such that
A=, Ap(mod k).

(4) For any A € G,,,(Z), there exists a unique element Ay € G,,(Zy) such that
A =, Ag(mod k).

We begin with the following Lemmas.

Lemma 1.1. Let A,B € M, (Z) such that A =,, B(mod k). Then |A]
|B|(mod k).

Proof. It follows from the definition of the congruence =,,. |

Note that the converse is not true.

0 1 01
but A is not congruent to B modulo 2.

Example 1. Let A = <1 1), B = <1 0) € M5(Z). Then |A] = |B|(mod 2),

Throughout this paper, we will denote the greatest common divisor of any two
positive integers s, ¢ by ged(s,t) (or simply (s,t)).

Lemma 1.2. Let a and b be any integers and k be any positive integer. If a =
b(mod k), then (a,k) = (b, k).

Proof. Clear. |

We can note that for any positive integers m and n(n > 2) and any prime
P, Gu(Zyn) contains G, (Zyn-1) properly in the sense of set inclusion. Indeed,
if A € Gp(Zpn—1), then (JA], p"~') = 1, and so (|4], p") = 1, which implies
A € Gy (Zpr). For a diagonal matrix D = [d;;] € G;(Zyn) such that d;; = p™-
Lforalli=1,2,---, m, D & Gp(Zyn-1). Hence Gy (Zypn) O Gpy(Zpn-1), but
Gm(Zypn) # Gy(Zyn-1). On the other hand, the subset G, (Zpyn-1) of Gy, (Zpn ) can
not form a subgroup in G,,(Z,~) by the following example.

Example 2. Let A = (3 1) € G(Zs)(C Ga(Zs)). Then A3 = (3 D e

GQ(ZQ) \ GQ(Z3). But A3 = <(2) 1) S GQ(Zg).

Theorem 1.3. Let m be any positive integer. If any two positive integers s and t
are relatively prime, then G, (Zst) is isomorphic to Guy(Zs) X Gu(Zy).

Proof. Define ¢ : G (Zs) — G(Zs) x G (Zy) by (A) = (B, C) where A =, B
(mod s) and A =, C (mod t). Then v is well-defined. Indeed, let A € G, (Zs)
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be arbitrary. Then (|4|,st) = 1. Since (s,t) = 1, (J4|,s) = (|A[,t) = 1. Since
A =,, B (mod s) and (|A|,s) = 1, (|B|,s) = 1 by Lemma 1.1 and Lemma 1.2,
and so B € G,,,(Zs). Similarly, we can have C' € G,,,(Z;). By using the definition
of congruence =,,, we can easily show that 1 is a group homomorphism. Next, to
prove v is onto, let (B = [b;;],C = [¢i;]) € Gm(Zs) X G (Zy) be arbitrary. Consider
the following equations: for all 4,5 =1,--- ,m,
x;; = b (mod s), x;; = ¢;; (mod t).

Since (s,t) = 1, the equations have the unique solution a;; € My,(Zs) for all ¢, j =
1,---,m by the Chinese Remainder Theorem [1, page 75]. Let A = [a;;] € My, (Zst).
Then A =, B (mod s) and A =, C (mod t). Since B € G,,(Zs), (|B|,s) = 1.
Since A =, B (mod s), (JA4|,s) = 1 by Lemma 1.2. By the similar argument, we
can have (|B|,t) = 1. Since (s,t) =1, (JA|,st) =1, and so A € G, (Zs). Finally,
we will show that ¢ is one-one. Consider ker(vy) = {A = [a;;] € GnZs) 1 A=y I,
(mod s), A =, I, (mod t)}. Let A = [a;;] € ker(¢)). Then for all 4,5 =1,---,m,
a;; is the solution of following equations:

i =1 (mod s), x4 =1 (mod t);

z;; =0 (mod s), z;; =0 (mod t) (i # j).
On the other hand, by the Chinese Remainder Theorem both the equations have

unique solutions in Zg;, x5 = 1foralli =1,--- ;mand z;; = 0foralli,j =1,--- ,m
and ¢ # j. Hence ker(¢) = {I,}, and so v is one-one. Consequently, ¢ is an
isomorphism, and thus we have the result. O

Corollary 1.4. Let m and k be any positive integers. If pi* - py?---pl= be the
prime factorization of k, then G,,(Zy) is isomorphic to Gm(Zp;u) X Gm(Zp;Lz) X
o X G (L ).

Proof. Tt follows from Theorem 1.3 and induction on s. g

2. The order of G,,(Z;)

Let ¢, (k) be the order of G, (Zy). In particular, if m = 1, then ¢;(k) is the
FEuler-Phi number of k, the number of elements of Zj which are relatively prime
to k. Recall that for any positive integer n and any prime p, ¢;(p") = p* —p"~! =
p-¢1(p"1), and for any two relatively primes s and t, ¢1(st) = ¢1(s) - ¢1(t). Let
I, (resp. I %) be the identity of the group G, (Z) (resp. Gp(Zy)). If there is
no confusion, we can let I,, = I, for the convenience of notation. From the

properties of the congruence =,,,, we can have the following Theorem.

Theorem 2.1. Let k be any positive integer and let A € M,,(Z) be arbitrary. If
|A| is relatively prime to k, then A®m(®) =T (mod k).

Proof. For any A € M,,(Z), there exists a unique element Ay € M,,(Zy,) such that
A =, Ao(mod k) by the property [3] of the congruence =,,. By Lemma 1.1, |A| =
|Ap|(mod k). Since |A| is relatively prime to k, A9 € Gy (Zy) by Lemma 1.2. Hence
Ap?m ) =, T,,(mod k). Also by the property [2] of the congruence =,,, A%m )
= Ao?"*) (mod k). Hence we have A?»(*) =T, (mod k). O
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Note that Theorem 2.1 extends Euler’s Theorem stated as follows.

Euler’s Theorem. Let a and k be any positive integers. If a is relatively prime
to k, then a®®) = 1 (mod k).

Lemma 2.2. Let m and n (n > 2) be any positive integers and let p be any prime.
If A € G(Zpn) and Ay € My (Zyn-1) such that A =,, Ay (mod p"1), then
Ao € Gm(an71).

Proof. It A € G,,(Zyn), then (JA|,p™) =1, and so (JA|,p"~ ') = 1. By Lemma 1.1
and Lemma 1.2, (|Ao|, p"~!) = 1, and so Ay € Gy (Zpn-1). O

Theorem 2.3. Let m and n (n > 2) be any positive integers and let p be any
prime. Then

(1) there exists a normal subgroup H of Gp(Zpn) such that Gy, (Zyn)/H is iso-
morphic to Gy, (Zyn-1);

(2) o) =™ G (™ );

(3) ¢m(pn) = pm2 : ¢m(pn71) = p2m2 : ¢m(pn72) == Z7<nil)m2 : ¢77L(p);
where ¢m(p) = (P™ — 1) (™ —p) -+ (p™ = p™ 7).

Proof. (1) Define 6 : Gy (Zpn) — Gp(Zpn-1) by 6(A) = Ao, where A =, Ay
(mod p"~ 1) for all A € G,,(Zyn). Then 6 is well-defined by Lemma 2.2. It is
easy to show that € is a group homomorphism. Next, we will show that € is onto.
Let Ag € Gyy(Zyn—1) be arbitrary. Then we can choose A € M,,(Z,~) such that
A=, Ap (mod p"'). Indeed, for Ay € Gy, (Zyn-1) there exists B € M,,(Z) such
that B =, Ag (mod p"~!). By the property [3] of congruence =,,, there exists
A € M,,(p") such that B =,,, A (mod p"), and then B =,,, A (mod p"~1). Therefore
A=, Ay (mod p"1). Since Ag € Gy (Zyn-1), (|Aol, p" 1) =1, and so (|Aol,p™) =
1. By Lemma 1.1 and Lemma 1.2, (|A4],p") = 1. Thus A € G,,(Z,»), which implies
that 0 is onto. Let H = ker(f). Then H = {A = [a;5] € G (p™) : a;; = 1(mod
p" ) forall i = 1,---,m, and a;; = 0 (mod p"~ ') for all i,j = 1,---,m and
i # j}. By the First Isomorphism Theorem, we can have the result (1).

(2) Note that A = [a;;] € ker() if and only if a;; = 1,1 +2p"~ 1 -+ |1+
(p—1)p" ! foralli=1,---,mand a;; = 0,0+ 2p"1,--- 0+ (p—1)p"* for
alli,j=1,---,m and i # j. Hence the order of H = ker(d) in (1) is p™ and so
G (p™) = (the order of H) ¢y (p"™1) = p™ - ¢ (p" 1) by (1).

(3) By the similar argument given in the proof (1), ¢, (pt) = p™ ¢ (p'=1) for all
t=2,---,n. It is easy to compute ¢ (p), ¢m(p) = (P" = 1)(p" —p) -~ (P —p™1).
Thus we have the result. (]

Corollary 2.4. Let m and k be any positive integers. If pi* - py?---pls be the
prime factorization of k, then ¢ (k) = ¢m(P1') - dm(D52) - - P (PF*).
Proof. It follows from Corollary 1.4 and Theorem 2.3. O
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Example 3. $5(2) = 6, ¢2(4) = 96, ¢(8) = 1536, ¢2(3) = 48, ¢2(27) = 314928,
-+, $3(2940) = 19,599,001,939, 501,921, 063, 850, 213, 376, 000, ctc.

Gi(Zy) 01

02 1
which is isomorphic to G;(Zx) where 01 is ¢ by m — i zero matrix, Oz is m — i by
i zero matrix and I is m — i by m — i identity matrix. Hence ¢;(k) is a divisor of
¢m (k). In fact, for the prime factorization of k, pJ* -py? - - - p2=, it is easily computed
that for each j =1,2,--- s,

7 nj—1 m?2—i2 m (P n;
(D7) = py DT Lm0,
b — (= 1) = py) - (00— 7" i)

Recall the special linear group of degree m over Zy, Spm(Zi) = {A € G (Zy) :
|Al = 1 (mod &)}, is the normal subgroup of G, (Zy).

Observe that forallt =1,2,--- ,m—1, ( ) is a subgroup of G, (Zy)

Lemma 2.5. Let m and k be any positive integers. Then G (Zy)/Sm(Zy) is
isomorphic to G1(Zy).

Proof. Define a map 0 : Gy, (Z,) — G1(Zy) by 0(A) = |A|(mod k). Then 0 is a
well-defined map. It is easy to show that 0 is a group homomorphism and is onto.

Note that ker(8) is Sy, (Zy). By the First Isomorphism Theorem, G, (Zx)/Sm(Zx)
is isomorphic to G1(Zy). O

From the above Lemma, we have that |S,,(Zy)| = ‘Z;Li((]f))
Corollary 2.6. Let m and k be any positive integers and let Sy = {B € G, (Zy,) :
|B| = t(mod k)}. Then Sy = ASy(Zy) = {AC € G (Zy) : C € Sp(Zg)} for any
A € G (Zy) such that |A] = t(mod k), i.e., St is a left coset of Sy, (Zy;) containing
A€ Gn(Zy).

Proof. 1t is clear by Lemma 2.5. O
From the above Corollary, we have that for any s and t € G1(Zy), |Ss| = S|

3. Some application to number theory

Recall that an integer g is said to be a primitive root modulo k if the order of
g modulo k is ¢1(k). In [1, pp 172-173 ], the following theorem is given:

Theorem 3.1. An integer k > 2 has a primitive root modulo k if and only if k
is one of the following: 2, 4, p', 2pt, where p is an odd prime and t an arbitrary
positive integer.

Observe that ¢ is a primitive root modulo k if and only if G;(Zy) is a cyclic
group with a generator a where g = a (mod k). In this section, we will illustrate
another proof of Theorem 3.1 by using the results obtained in section 1 and section
2.

Lemma 3.2. G1(Zan) is not a cyclic group for all positive integer n > 3.
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Proof. Let (1 #)g € G1(Zan) be arbitrary for all positive integer n > 3. Then
g =144t or g = —1 + 4t for some k > 1. It is easily computed that an_2 =1
(mod 2"). Since the order of G1(Zyn) is 271, G1(Zyn) is not cyclic for all positive
integer n > 3. (]

Lemma 3.3. G1(Z,n) is a cyclic group for any odd prime p and all positive integer
n.

Proof. Let p be any odd prime. We will prove it by induction on n. When n = 1,
G1(Zy) is clearly a cyclic group. Assume that G'y(Z,n-1) is a cyclic group. The map
0 : G1(Zpn) — G1(Zyn-1) defined by 6(a) = ag where a = ag (mod p"~!) for all
a € G1(Zyn) is a group homomorphism by the special case m = 1 in Theorem 2.3.
Then by the First Isomorphism Theorem, G(Zyn)/H is isomorphic to G1(Zyn-1)
where H = ker(6). By assumption, G1(Z,n-1) is cyclic and so G1(Z,»)/H is cyclic.
Hence there exists a generator gH € G1(Z,~)/H, and so ¢?®" ) e Hbut gt ¢ H
for all t < g?®" "), Observe that g®®" ") is not congruent to 1 mod p". Indeed, if
¢?@®" ) =1 (mod p"), then ¢g**") = g¢’(1’"71)(m0d p™). Since g is relatively prime
to p”, g =1 (mod p"), which implies the order of G1(Z,~)/H is p, a contradiction.
Therefore, g‘i’(pMI) is not congruent to 1 mod p™. Since H is a cyclic group of order
D, g‘f)(p%l) is a generator of H. Thus the order of g € G1(Zyn) is ¢(p™), and so
G1(Zyn) is a cyclic group. O

Lemma 3.4. Let G and H be two finite cyclic groups of orders |G| and |H| re-
spectively. Then G x H is a cyclic group if and only if |G| and |H| are relatively
primes.

Proof. Clear. O

Hence we can have the proof of the another version of Theorem 3.1 as follows:

Theorem 3.5. For some positive integer k, G1(Zy) is a cyclic group if and only if
k is one of the following: 2, 4, p', 2pt, where p is an odd prime and t an arbitrary
positive integer.

Proof. From the special case m = 1 in Corollary 1.4, we have that if p}* - p3? - - p7=
is the prime factorization of any positive integer k, then G1(Zy) is isomorphic to
Gy (Zp;q) X G1(Zp;2) X -+ X G1(Zyrs). Hence it follows from Lemma 3.2, Lemma
3.3 and Lemma 3.4. O
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