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Abstract. Let m and k be any positive integers, let Zk the ring of integers of modulo

k, let Gm(Zk) the group of all m by m nonsingular matrices over Zk and let φm(k) the

order of Gm(Zk). In this paper, φm(k) can be computed by the following investigation:

First, for any relatively prime positive integers s and t, Gm(Zst) is isomorphic to Gm(Zs)×
Gm(Zt). Secondly, for any positive integer n and any prime p, φm(pn) = pm2 ·φm(pn−1) =

p2m2 · φm(pn−2) = · · · = p(n−1)m2 · φm(p), and so φm(k) = φm(pn1
1 ) · φm(pn2

2 ) · · ·φm(pns
s )

for the prime factorization of k, k = pn1
1 · pn2

2 · · · pns
s .

1. Introduction

For any positive integers m and k, let Z (resp. Zk = {0, 1, · · · , k−1}) be the ring
of all integers (resp. the ring of integers under addition and multiplication modulo
k) and let Mm(Z) (resp. Mm(Zk)) the ring of all m by m matrices over Z (resp. the
ring of all m by m matrices over Zk). Recall that the set of all m by m nonsingular
matrices over Z(resp. Zk) forms a group under the matrix multiplication (called
the general linear group of degree m over Z(resp. Zk)). We will denote this group
by Gm(Z) (resp. Gm(Zk)). Also we can note that the set of all m by m matrices in
Mm(Z) (resp. Mm(Zk)) with the determinant 1 forms a normal subgroup of Gm(Z)
(resp. Gm(Zk)) (called the special linear group of degree m over Z (resp. Zk)) and
denoted by Sm(Z) (resp. Sm(Zk)). Note that A ∈ Mm(Zk) is nonsingular if and
only if the determinant of A ∈ Mm(Zk) is relatively prime to k. We will denote the
determinant of A ∈ Mm(Z) (or Mm(Zk)) by |A|.

Consider the following relation ≡m defined on Mm(Z): For any A = [aij ] and
B = [bij ] ∈ Mm(Z), A ≡m B(mod k) (we read this A is congruent to B modulo k) if
aij ≡ bij (modulo k) (i.e., aij−bij is divided by k) for all i, j = 1, 2, · · · ,m. Observe
that the congruence relation ≡m is an equivalence relation on Mm(Z) satisfying the
following properties:
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(1) For any A,B, C and D ∈ Mm(Z) such that A ≡m B(mod k) and C ≡m

D(mod k), A + C ≡m B + D(mod k).

(2) For any A,B, C and D ∈ Mm(Z) such that A ≡m B(mod k) and C ≡m

D(mod k), AC ≡m BD(mod k). In particular, As ≡m Bs(mod k) for all
positive integers s.

(3) For any A ∈ Mm(Z), there exists a unique element A0 ∈ Mm(Zk) such that
A ≡m A0(mod k).

(4) For any A ∈ Gm(Z), there exists a unique element A0 ∈ Gm(Zk) such that
A ≡m A0(mod k).

We begin with the following Lemmas.

Lemma 1.1. Let A, B ∈ Mm(Z) such that A ≡m B(mod k). Then |A| ≡
|B|(mod k).

Proof. It follows from the definition of the congruence ≡m. ¤
Note that the converse is not true.

Example 1. Let A =
(

1 1
0 1

)
, B =

(
1 0
0 1

)
∈ M2(Z). Then |A| ≡ |B|(mod 2),

but A is not congruent to B modulo 2.

Throughout this paper, we will denote the greatest common divisor of any two
positive integers s, t by gcd(s, t) (or simply (s, t)).

Lemma 1.2. Let a and b be any integers and k be any positive integer. If a ≡
b(mod k), then (a, k) = (b, k).

Proof. Clear. ¤
We can note that for any positive integers m and n(n ≥ 2) and any prime

p, Gm(Zpn) contains Gm(Zpn−1) properly in the sense of set inclusion. Indeed,
if A ∈ Gm(Zpn−1), then (|A|, pn−1) = 1, and so (|A|, pn) = 1, which implies
A ∈ Gm(Zpn). For a diagonal matrix D = [dij ] ∈ Gm(Zpn) such that dii = pn-
1 for all i = 1, 2, · · · , m, D /∈ Gm(Zpn−1). Hence Gm(Zpn) ⊃ Gm(Zpn−1), but
Gm(Zpn) 6= Gm(Zpn−1). On the other hand, the subset Gm(Zpn−1) of Gm(Zpn) can
not form a subgroup in Gm(Zpn) by the following example.

Example 2. Let A =
(

2 1
0 1

)
∈ G2(Z3)(⊂ G2(Z9)). Then A3 =

(
8 7
0 1

)
∈

G2(Z9) \G2(Z3). But A3 =
(

2 1
0 1

)
∈ G2(Z3).

Theorem 1.3. Let m be any positive integer. If any two positive integers s and t
are relatively prime, then Gm(Zst) is isomorphic to Gm(Zs) × Gm(Zt).

Proof. Define ψ : Gm(Zst) → Gm(Zs)×Gm(Zt) by ψ(A) = (B, C) where A ≡m B
(mod s) and A ≡m C (mod t). Then ψ is well-defined. Indeed, let A ∈ Gm(Zst)
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be arbitrary. Then (|A|, st) = 1. Since (s, t) = 1, (|A|, s) = (|A|, t) = 1. Since
A ≡m B (mod s) and (|A|, s) = 1, (|B|, s) = 1 by Lemma 1.1 and Lemma 1.2,
and so B ∈ Gm(Zs). Similarly, we can have C ∈ Gm(Zt). By using the definition
of congruence ≡m, we can easily show that ψ is a group homomorphism. Next, to
prove ψ is onto, let (B = [bij ], C = [cij ]) ∈ Gm(Zs)×Gm(Zt) be arbitrary. Consider
the following equations: for all i, j = 1, · · · , m,

xij ≡ bij (mod s), xij ≡ cij (mod t).
Since (s, t) = 1, the equations have the unique solution aij ∈ Mm(Zst) for all i, j =
1, · · · ,m by the Chinese Remainder Theorem [1, page 75]. Let A = [aij ] ∈ Mm(Zst).
Then A ≡m B (mod s) and A ≡m C (mod t). Since B ∈ Gm(Zs), (|B|, s) = 1.
Since A ≡m B (mod s), (|A|, s) = 1 by Lemma 1.2. By the similar argument, we
can have (|B|, t) = 1. Since (s, t) = 1, (|A|, st) = 1, and so A ∈ Gm(Zst). Finally,
we will show that ψ is one-one. Consider ker(ψ) = {A = [aij ] ∈ GmZst) : A ≡m Im

(mod s), A ≡m Im (mod t)}. Let A = [aij ] ∈ ker(ψ). Then for all i, j = 1, · · · ,m,
aij is the solution of following equations:

xii ≡ 1 (mod s), xii ≡ 1 (mod t);
xij ≡ 0 (mod s), xij ≡ 0 (mod t) (i 6= j).

On the other hand, by the Chinese Remainder Theorem both the equations have
unique solutions in Zst, xii = 1 for all i = 1, · · · ,m and xij = 0 for all i, j = 1, · · · ,m
and i 6= j. Hence ker(φ) = {Im}, and so ψ is one-one. Consequently, ψ is an
isomorphism, and thus we have the result. ¤

Corollary 1.4. Let m and k be any positive integers. If pn1
1 · pn2

2 · · · pns
s be the

prime factorization of k, then Gm(Zk) is isomorphic to Gm(Zp
n1
1

) × Gm(Zp
n2
2

) ×
· · · ×Gm(Zpns

s
).

Proof. It follows from Theorem 1.3 and induction on s. ¤

2. The order of Gm(Zk)

Let φm(k) be the order of Gm(Zk). In particular, if m = 1, then φ1(k) is the
Euler-Phi number of k, the number of elements of Zk which are relatively prime
to k. Recall that for any positive integer n and any prime p, φ1(pn) = pn − pn−1 =
p · φ1(pn−1), and for any two relatively primes s and t, φ1(st) = φ1(s) · φ1(t). Let
Im (resp. Im,k) be the identity of the group Gm(Z) (resp. Gm(Zk)). If there is
no confusion, we can let Im = Im,k for the convenience of notation. From the
properties of the congruence ≡m, we can have the following Theorem.

Theorem 2.1. Let k be any positive integer and let A ∈ Mm(Z) be arbitrary. If
|A| is relatively prime to k, then Aφm(k) ≡m Im(mod k).

Proof. For any A ∈ Mm(Z), there exists a unique element A0 ∈ Mm(Zk) such that
A ≡m A0(mod k) by the property [3] of the congruence ≡m. By Lemma 1.1, |A| ≡
|A0|(mod k). Since |A| is relatively prime to k, A0 ∈ Gm(Zk) by Lemma 1.2. Hence
A0

φm(k) ≡m Im(mod k). Also by the property [2] of the congruence ≡m, Aφm(k)

≡m A0
φm(k)(mod k). Hence we have Aφm(k) ≡m Im(mod k). ¤
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Note that Theorem 2.1 extends Euler′s Theorem stated as follows.

Euler’s Theorem. Let a and k be any positive integers. If a is relatively prime
to k, then aφ(k) ≡ 1 (mod k).

Lemma 2.2. Let m and n (n ≥ 2) be any positive integers and let p be any prime.
If A ∈ Gm(Zpn) and A0 ∈ Mm(Zpn−1) such that A ≡m A0 (mod pn−1), then
A0 ∈ Gm(Zpn−1).

Proof. If A ∈ Gm(Zpn), then (|A|, pn) = 1, and so (|A|, pn−1) = 1. By Lemma 1.1
and Lemma 1.2, (|A0|, pn−1) = 1, and so A0 ∈ Gm(Zpn−1). ¤

Theorem 2.3. Let m and n (n ≥ 2) be any positive integers and let p be any
prime. Then

(1) there exists a normal subgroup H of Gm(Zpn) such that Gm(Zpn)/H is iso-
morphic to Gm(Zpn−1);

(2) φm(pn) = pm2
φm(pn−1);

(3) φm(pn) = pm2 · φm(pn−1) = p2m2 · φm(pn−2) = · · · = p(n−1)m2 · φm(p),
where φm(p) = (pm − 1)(pm − p) · · · (pm − pm−1).

Proof. (1) Define θ : Gm(Zpn) → Gm(Zpn−1) by θ(A) = A0, where A ≡m A0

(mod pn−1) for all A ∈ Gm(Zpn). Then θ is well-defined by Lemma 2.2. It is
easy to show that θ is a group homomorphism. Next, we will show that θ is onto.
Let A0 ∈ Gm(Zpn−1) be arbitrary. Then we can choose A ∈ Mm(Zpn) such that
A ≡m A0 (mod pn−1). Indeed, for A0 ∈ Gm(Zpn−1) there exists B ∈ Mm(Z) such
that B ≡m A0 (mod pn−1). By the property [3] of congruence ≡m, there exists
A ∈ Mm(pn) such that B ≡m A (mod pn), and then B ≡m A (mod pn−1). Therefore
A ≡m A0 (mod pn−1). Since A0 ∈ Gm(Zpn−1), (|A0|, pn−1) = 1, and so (|A0|, pn) =
1. By Lemma 1.1 and Lemma 1.2, (|A|, pn) = 1. Thus A ∈ Gm(Zpn), which implies
that θ is onto. Let H = ker(θ). Then H = {A = [aij ] ∈ Gm(pn) : aii ≡ 1(mod
pn−1) for all i = 1, · · · ,m, and aij ≡ 0 (mod pn−1) for all i, j = 1, · · · ,m and
i 6= j}. By the First Isomorphism Theorem, we can have the result (1).

(2) Note that A = [aij ] ∈ ker(θ) if and only if aii = 1, 1 + 2pn−1, · · · , 1 +
(p − 1)pn−1 for all i = 1, · · · ,m and aij = 0, 0 + 2pn−1, · · · , 0 + (p − 1)pn−1 for
all i, j = 1, · · · ,m and i 6= j. Hence the order of H = ker(θ) in (1) is pm2

and so
φm(pn) = (the order of H)· φm(pn−1) = pm2 · φm(pn−1) by (1).

(3) By the similar argument given in the proof (1), φm(pt) = pm2
φm(pt−1) for all

t = 2, · · · , n. It is easy to compute φm(p), φm(p) = (pm−1)(pm−p) · · · (pm−pm−1).
Thus we have the result. ¤

Corollary 2.4. Let m and k be any positive integers. If pn1
1 · pn2

2 · · · pns
s be the

prime factorization of k, then φm(k) = φm(pn1
1 ) · φm(pn2

2 ) · · ·φm(pns
s ).

Proof. It follows from Corollary 1.4 and Theorem 2.3. ¤
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Example 3. φ2(2) = 6, φ2(4) = 96, φ2(8) = 1536, φ2(3) = 48, φ2(27) = 314928,
· · · , φ3(2940) = 19, 599, 001, 939, 501, 921, 063, 850, 213, 376, 000, etc.

Observe that for all i = 1, 2, · · · ,m−1,
(

Gi(Zk) 01

02 I

)
is a subgroup of Gm(Zk)

which is isomorphic to Gi(Zk) where 01 is i by m − i zero matrix, 02 is m − i by
i zero matrix and I is m − i by m − i identity matrix. Hence φi(k) is a divisor of
φm(k). In fact, for the prime factorization of k, pn1

1 ·pn2
2 · · · pns

s , it is easily computed
that for each j = 1, 2, · · · , s,

φm(pnj

j ) = p
(nj−1)(m2−i2)
j

φm(pj)
φi(pj)

φi(p
nj

j ),
φm(pj)
φi(pj)

= (pm
j − 1)(pm

j − pj)· · · (pm
j − pm−i−1

j )pi(m−i)
j φi(pj).

Recall the special linear group of degree m over Zk, Sm(Zk) = {A ∈ Gm(Zk) :
|A| ≡ 1 (mod k)}, is the normal subgroup of Gm(Zk).

Lemma 2.5. Let m and k be any positive integers. Then Gm(Zk)/Sm(Zk) is
isomorphic to G1(Zk).

Proof. Define a map θ : Gm(Zk) → G1(Zk) by θ(A) = |A|(mod k). Then θ is a
well-defined map. It is easy to show that θ is a group homomorphism and is onto.
Note that ker(θ) is Sm(Zk). By the First Isomorphism Theorem, Gm(Zk)/Sm(Zk)
is isomorphic to G1(Zk). ¤

From the above Lemma, we have that |Sm(Zk)| = φm(k)
φ1(k) .

Corollary 2.6. Let m and k be any positive integers and let St = {B ∈ Gm(Zk) :
|B| ≡ t(mod k)}. Then St = ASm(Zk) = {AC ∈ Gm(Zk) : C ∈ Sm(Zk)} for any
A ∈ Gm(Zk) such that |A| ≡ t(mod k), i.e., St is a left coset of Sm(Zk) containing
A ∈ Gm(Zk).

Proof. It is clear by Lemma 2.5. ¤

From the above Corollary, we have that for any s and t ∈ G1(Zk), |Ss| = |St|.

3. Some application to number theory

Recall that an integer g is said to be a primitive root modulo k if the order of
g modulo k is φ1(k). In [1, pp 172-173 ], the following theorem is given:

Theorem 3.1. An integer k ≥ 2 has a primitive root modulo k if and only if k
is one of the following: 2, 4, pt, 2pt, where p is an odd prime and t an arbitrary
positive integer.

Observe that g is a primitive root modulo k if and only if G1(Zk) is a cyclic
group with a generator a where g ≡ a (mod k). In this section, we will illustrate
another proof of Theorem 3.1 by using the results obtained in section 1 and section
2.

Lemma 3.2. G1(Z2n) is not a cyclic group for all positive integer n ≥ 3.
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Proof. Let (1 6=)g ∈ G1(Z2n) be arbitrary for all positive integer n ≥ 3. Then
g = 1 + 4t or g = −1 + 4t for some k ≥ 1. It is easily computed that g2n−2 ≡ 1
(mod 2n). Since the order of G1(Zpn) is 2n−1, G1(Zpn) is not cyclic for all positive
integer n ≥ 3. ¤

Lemma 3.3. G1(Zpn) is a cyclic group for any odd prime p and all positive integer
n.

Proof. Let p be any odd prime. We will prove it by induction on n. When n = 1,
G1(Zp) is clearly a cyclic group. Assume that G1(Zpn−1) is a cyclic group. The map
θ : G1(Zpn) → G1(Zpn−1) defined by θ(a) = a0 where a ≡ a0 (mod pn−1) for all
a ∈ G1(Zpn) is a group homomorphism by the special case m = 1 in Theorem 2.3.
Then by the First Isomorphism Theorem, G1(Zpn)/H is isomorphic to G1(Zpn−1)
where H = ker(θ). By assumption, G1(Zpn−1) is cyclic and so G1(Zpn)/H is cyclic.
Hence there exists a generator gH ∈ G1(Zpn)/H, and so gφ(pn−1) ∈ H but gt /∈ H

for all t < gφ(pn−1). Observe that gφ(pn−1) is not congruent to 1 mod pn. Indeed, if
gφ(pn−1) ≡ 1 (mod pn), then gφ(pn) ≡ gφ(pn−1)(mod pn). Since g is relatively prime
to pn, gp ≡ 1 (mod pn), which implies the order of G1(Zpn)/H is p, a contradiction.
Therefore, gφ(pn−1) is not congruent to 1 mod pn. Since H is a cyclic group of order
p, gφ(pn−1) is a generator of H. Thus the order of g ∈ G1(Zpn) is φ(pn), and so
G1(Zpn) is a cyclic group. ¤

Lemma 3.4. Let G and H be two finite cyclic groups of orders |G| and |H| re-
spectively. Then G × H is a cyclic group if and only if |G| and |H| are relatively
primes.

Proof. Clear. ¤
Hence we can have the proof of the another version of Theorem 3.1 as follows:

Theorem 3.5. For some positive integer k, G1(Zk) is a cyclic group if and only if
k is one of the following: 2, 4, pt, 2pt, where p is an odd prime and t an arbitrary
positive integer.
Proof. From the special case m = 1 in Corollary 1.4, we have that if pn1

1 ·pn2
2 · · · pns

s
is the prime factorization of any positive integer k, then G1(Zk) is isomorphic to
G1(Zp

n1
1

)×G1(Zp
n2
2

)× · · · ×G1(Zpns
s

). Hence it follows from Lemma 3.2, Lemma
3.3 and Lemma 3.4. ¤
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