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ABSTRACT⎯In a real environment, sound recordings are 
commonly distorted by channel and background noise, and the 
performance of audio identification is mainly degraded by them. 
Recently, Philips introduced a robust and efficient audio 
fingerprinting scheme applying a differential (high-pass filtering) 
to the frequency-time sequence of the perceptual filter-bank 
energies. In practice, however, the robustness of the audio 
fingerprinting scheme is still important in a real environment. In 
this letter, we introduce alternatives to the frequency-temporal 
filtering combination for an extension method of Philips’ audio 
fingerprinting scheme to achieve robustness to channel and 
background noise under the conditions of a real situation. Our 
experimental results show that the proposed filtering 
combination improves noise robustness in audio identification. 

Keywords⎯ Music information retrieval, audio fingerprint, 
frequency filtering, temporal filtering. 

I. Introduction 
Recently content-based music information retrieval (MIR) 

has been noted as an attractive state-of-the-art application 
service in wire/wireless communication. For example, many 
companies nowadays offer application services that can not 
only provide information on songs being played over public 
loudspeakers, but can also be used to monitor broadcast music 
automatically or prevent the unauthorized sharing of music 
files over peer-to-peer networks [1], [2]. To apply commercial 
service, recent reports focus on the concurrent guarantee of 
both scalability and quality for MIR by content-based audio 
identification in a large database [3]-[7]. 
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Philips’ audio fingerprinting scheme, one of the most recent 
content-based audio identification techniques, is definitely 
suited to the above purpose [3]. In a real environment, however, 
problems still remain such as channel and background noise, 
speed-changes, arrangements, and so on. In particular, noise 
robustness is a major challenge in a real environment, just as in 
the general topic of speech recognition technique. Generally, 
sound recordings are easily corrupted by linear or non-linear 
distortion caused by channel and background noise in a real 
environment. Hence, false audio identification is mainly caused 
by a mismatch between the original audio signal and the 
distorted one. This letter concerns an audio fingerprinting 
scheme for noise-robustness, one of the major issues in MIR. 

II. Audio Fingerprinting Scheme 

1. Philips’ Audio Fingerprinting Scheme 

An overview of Philips’ scheme is depicted in Fig. 1. A Mel 
or Bark scale filter-bank is commonly used to reflect the 
perceptual characteristics of an audio signal in this work. A 
sub-fingerprint for every frame is based on a sign of the power 
spectrum, differentiated simultaneously along the time and 
frequency axes. The differentiation of spectral parameters 
along the frequency or time axes corresponds to high-pass 
filtering. It may be possible to remove slowly varying 
components as undesired perturbations. In addition, the 
differentiated power spectrum is uncorrelated with its temporal 
and frequency neighbors. Here, a sub-fingerprint is typically a 
32-bit code from 33 perceptually divided frequency bands for 
every frame. The 32-bit code is usually referred to as a hash 
value which acts as a direct addressing point for database 
lookup. That is, a sub-fingerprint can be hashed by a 32-bit 
code. The bit is assigned as  
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where E(n, m) is the energy of the n-th frame and the m-th band. 
This scheme can be very efficient for database lookup since the 
hash value is highly unique. For fast database lookup, the 
matching candidates can be selected by hash values with pre-
determined Hamming distance. In this scheme, the similarity 
measure is based on the Hamming distance between hash values. 
The best-matched result is determined on the basis of the bit 
error rate (BER) per fingerprint block over an audio clip.  

 
 

Fig. 1. Overview of Philips’ audio fingerprinting scheme. 
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2. Alternatives to Frequency Filtering  

As a matter of fact, the above scheme is insufficient for highly 
robust audio hashing in a real-noise condition since the filter-
bank energies (FBEs) are still correlated. When some bands are 
corrupted by noise, the Hamming distance could be greater 
between an original and a distorted sub-fingerprint owing to the 
correlation of the FBEs. Thus, the audio fingerprint would be 
much more robust to noise if the FBEs were decorrelated. 
Frequency filtering is generally used to decorrelate the FBEs, 
which is somewhat verified in the speech recognition system [8]-
[10]. The typical frequency filtering techniques are defined as 

1
1 1)( −−= zzH F ,                  (2) 

,5.0

1
11)1(

)1()(
1

1

2 =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

+⋅+

−⋅
=

−

−

η

η
ηη

η where
z

zzH F (3) 

1
3 )( −−= zzzH F ,                (4) 

where HF1 is a high-pass first-order FIR filter, HF2 is a high-
pass IIR filter, and HF3 is a band-pass second-order FIR filter. 
The HF1 used in the Philips’ scheme could lose a significant 
amount of spectral information because it has a very steep 
slope, as shown in Fig. 2. Even if HF2 has a proper slope, it still 
weights high-quefrency components. The frequency filter 
should reduce noise characteristics that are slowly varying. As 
well, high-quefrency components should be cut off because, 

theoretically, they contain less information on audio 
characteristics. Thus, the band-pass filter may be more relevant 
to frequency filtering in this work. Our main goal in this letter 
is to find the most relevant frequency filter to extract a noise-
robust audio fingerprint in a real environment. For that reason, 
HF3 would be more effective under real-noise conditions since 
it has the most suitable filter shape as shown in Fig. 2. 
 

 

Fig. 2. Filter response of various frequency filters. 
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3. Alternatives to Temporal Filtering  

Temporal filtering of the FBEs is for the purpose of removing 
D.C. and slowly varying components caused by the undesired 
perturbations of linear distortion such as channel noise [10], [11]. 
The audio fingerprints would be much more immune to channel 
distortion if the FBEs were uncorrelated with their temporal 
neighbors. The typical temporal filtering techniques are defined as  
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where α = 0.94, HT1 is a first-order FIR filter, HT2 is a typical 
regression formula, and HT3 is the RASTA filter. HT2 when K=2 is 
used in this work. The HT1 used in the Philips’ scheme may be 
expected to suppress the effects of convolutional noise by the 
channel. However, low-pass filtering is necessary for smoothing 
out the fast spectral change. For that reason, HT2 or HT3 would be 
more relevant to temporal filtering for removing channel-distortion.  

III. Experiments 

1. Audio Data 

For experiments in a real environment, an audio query clip 
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was captured using inexpensive microphones which were 
placed 10 to 20 cm from a 2.1-channel loudspeaker connected 
to an mp3 player. The audio query is converted to standard 
PCM format which is sampled at 11.025 kHz and quantized 
with 16 bits in a mono-channel. Music items for references 
consisted of 5,000 popular songs in mp3 format (192 kbps, 
44.1 kHz, stereo) converted from audio CDs. They were down-
sampled to 11.025 kHz in consideration of portable devices 
such as PDAs or mobile phones. They include various genres 
such as rock/ballad, pop/dance, hip-hop, and classical.  

To evaluate the proposed techniques, the query set consists 
of five types of audio query data according to the device and 
the recording environment. The noise data consists of real-
noise signals recorded in a real environment. Audio query data 
are captured from 50 randomly selected songs per set. Each 
song is played at randomly set offsets 30 times. Only set IV has 
a 7 second duration; the others have an 8 second duration.  

Set I: Directly crop mp3 files. 
Set II: Use a stand microphone and 2.1-channel loudspeakers 

in a very quiet environment. 
Set III: Use a pair of stand/pin microphones and 2.1-channel 

loudspeakers in a noisy environment with TV sounds and 
human voices. 

Set IV: Use a pair of stand/pin microphones and 2-channel laptop 
PC-speakers, which poorly reproduce sound, in a noisy 
environment with TV sounds, human voices, and other sporadic 
noises. In addition, some cases have overflown into the 
amplitude range of 16-bit PCM due to very loud music sounds. 

Set V: Directly extract audio clips from a video file recorded 
from a TV music show. It is mixed with background noises 
such as the applauding or cheering sounds of the audience. 
Here, the vocals are live but the music is pre-recorded. 

Noise Data: Record real-noise signals by MD (Sharp: IM-DR 
580H) in a real-space such as a department store, restaurant, 
street, underground shopping center, or home. 

In the signal processing step, the audio frame is 
parameterized into a 0.37 s rate and shifted at an 11.6 ms rate. 
Considering the human auditory system, the selected frequency 
bands lie in a range from 300 Hz to 3,000 Hz. 

2. Performance Evaluation 

In an ideal case, the sub-fingerprint is reliable and there is no 
bit error. However, it is not perfect when an audio signal is 
corrupted by a linear or non-linear distortion. To improve this 
defect, the candidate positions for the database lookup are 
expanded into hash values with a Hamming distance of a one-
bit error [3]. Thus, the system needs 33 times more lookup for 
audio identification. However, it does not check all hash 

candidates since it sets the threshold for breaking the database 
lookup. Empirically, it took only 3 to 4 times more lookup 
when we set the threshold to 0.33 over fingerprint block. 

As shown in Tables 1 and 2, in the cases where the lookup 
candidates are expanded or not, the alternatives to frequency or 
temporal filtering generally outperform and are useful for real-
application when the query set is corrupted by noise and 
channel distortion. As expected, HF2 is a little better than HF1 
which is used in the Philips’ scheme. On the other hand, HF3 is 
superior to other frequency filtering methods in the noisiest 
conditions. As expected, the RASTA filter, HT3, is more 
effective with regard to channel-distortion such as set IV. 
 

Table 1. Recognition performance evaluation of alternatives to 
frequency filtering when HT1 is used as a temporal filter. 

Database lookup candidates 

Hamming distance = 0 Hamming distance ≤ 1

Frequency
filter

Query HF1 HF2 HF3 HF1 HF2 HF3 

Set I 100% 100% 100% 100% 100% 100%

Set II 98.2% 98.6% 99.6% 100% 100% 100%

Set III 96.2% 97.7% 97% 100% 100% 100%

Set IV 78.7% 77.4% 82.5% 97.2% 98.3% 98.5%

Set V 56.3% 58.2% 68.8% 92.8% 94.7% 98.1%

Table 2. Recognition performance evaluation of alternatives to 
temporal filtering when HF1 is used as a frequency filter. 

Database lookup candidates 

Hamming distance = 0 Hamming distance ≤ 1

Temporal
filter

Query HT1 HT2 HT3 HT1 HT2 HT3 

Set I 100% 100% 100% 100% 100% 100%

Set II 98.2% 98.2% 99.2% 100% 100% 100%

Set III 96.2% 97.5% 97.7% 100% 100% 100%

Set IV 78.7% 79.1% 86.3% 97.2% 97.2% 99%

Set V 56.3% 58% 63.1% 92.8% 94.5% 95.8%

Table 3. Recognition performance comparison by the frequency-
temporal filtering combinations when the lookup 
candidates are expanded. 

Hamming distance ≤ 1 
Query set

HF1+ HT1 HF1+ HT3 HF3+ HT1 HF3+ HT3

Set I 100% 100% 100% 100% 

Set II 100% 100% 100% 100% 

Set III 100% 100% 100% 100% 

Set IV 97.2% 99% 98.5% 99.2% 

Set V 92.8% 95.8% 98.1% 95.4% 
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Table 3 shows the performance comparison according to the 
frequency-temporal filtering combinations. As shown in Table 
3, the combination of HF3 and HT1 is more effective for real-
noise such as set V. On the other hand, in the case of the 
channel-noise such as set IV, the combination of HF3 and HT3 
has the best quality. That is, the RASTA filter is effective in 
normalizing the channel-effects, and HF3 is effective in 
smoothing out real-noise. 

To consider a more realistic situation, the noisy query set was 
made by adding set II to each noise data in accordance with the 
signal-to-noise ratio (SNR). Figure 3 shows the effectiveness of 
the frequency-temporal filtering combinations in real 
environments. Of course, the results in Fig. 3 were achieved 
when the lookup candidates were expanded. As expected, the 
filtering combination of HF3 and HT1 generally had a very high 
quality in real environments everywhere. In the cases of street 
and home noise, the combination of HF3 and HT3 had the best 
quality. In these cases it could achieve synergy effects because 
some of the noise data had time-stationary characteristics like 
channel-noise. That is, HT3 as a temporal filter is only effective 
with regard to channel-distortion. On the other hand, HF3 as a 
frequency filter is much more effective in extracting the audio 
fingerprints highly robust to real-noise everywhere.  
 

 

Fig. 3. Performances of the frequency-temporal filtering. 
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IV. Conclusions 

In our experiments, we observed that the alternatives to 
frequency or temporal filtering, in terms of noise robustness, 

are generally effective in the case of recording a query signal in 
a real situation. In particular, the band-pass second-order FIR 
filter is superior to the other frequency filtering techniques 
under real-noise conditions. However, the RASTA filter as a 
temporal filter is robust to only channel-distortion. In this work, 
there was no synergy of the filtering combination of HF3 and 
the RASTA filter anywhere. For further study, we will seek 
other methods of frequency-temporal filtering in order to 
achieve better synergy effects in the above cases.  
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