DOI QR코드

DOI QR Code

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Published : 2007.11.30

Abstract

Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Keywords

References

  1. R. K. Ahrenkiel and T. R. Massopust, 'Heterojunction formation in (Cd,Zn)S/$ZnIn_2S_4$ ternary solar cells', Appl. Phys. Lett., vol. 43, no. 7, pp. 658-661, 1983 https://doi.org/10.1063/1.94474
  2. S. Wagner, J. L. Shay, and P. Migliorat, '$ZnIn_2S_4$/CdS heterojunction photovoltaic detectors', Applied Phys. Lett., vol. 25, no. 8, pp. 434-435, 1974 https://doi.org/10.1063/1.1655537
  3. P. Migliorato and J. L. Shay, 'Analysis of the electrical and luminescent properties of $ZnIn_2S_4$', J. Appl. Phys., vol. 146, no. 4, pp. 1777-1782, 1975
  4. S. Shionoya and G. Sanchez, 'Luminescence and impurity states in $ZnIn_2S_4$', Crystal Research Technology, vol. 16, 19 $S_1$ pp. 1369-1376, 1983
  5. D. Haneman and J. Szot, 'Polycrystalline $ZnIn_2S_4$ photoelectrochemical cells', Appl. Phys. Lett., vol. 46, no. 8, pp. 778-780, 1985 https://doi.org/10.1063/1.95907
  6. V. Riede, H. Neumann, and X. Nguyen, 'Infrared lattice vibration spectra of $ZnIn_2S_4$', Solid state commucation, vol. 28, pp. 449-454, 1978 https://doi.org/10.1016/0038-1098(78)90836-0
  7. I. Shih, C. H. Champness, and A. Vahid Shahihi, 'Growth by directional freezing of $ZnIn_2S_4$ and diffused homojunctions in bulk material', Solar cells, vol. 16, pp. 27-41. 1984 https://doi.org/10.1016/0379-6787(86)90073-6
  8. D. Cahen, P. J. Ireland, L. L. Kazmerski,and F. A. Thiel, 'X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $ZnIn_2S_4$ photo electrodes', J. Appl. Phys., vol. 57, no. 2, pp. 4761-4771, 1985 https://doi.org/10.1063/1.335341
  9. K. J. Hong, and T. S. Jeong, 'The optical properties of CdS crystal grown by the sublimation method', J. Crystal Growth, vol. 218, pp. 19-26, 2000 https://doi.org/10.1016/S0022-0248(00)00491-7
  10. W. Horig and H. Sobotta, 'The optical properties of $ZnIn_2S_4$ thin films', Thin Solid Films, vol. 48, pp. 67-72, 1978 https://doi.org/10.1016/0040-6090(78)90332-2
  11. K. J. Hong and T. S. Jeong, 'The characterization of ZnSe/GaAs epilayers grown by hot wall epitaxy', J. Crystal Growth, vol. 172, pp. 89-96, 1997 https://doi.org/10.1016/S0022-0248(96)00725-7
  12. B. D. Cullity, Elements of X-ray Diffractions, Caddson-Wesley, chap 11, 1985
  13. J. Parkes and M. J. Hampshire, 'Growth of large $ZnIn_2S_4$ single crystals', J. Appl. Cryst., vol. 6, pp. 414-417. 1973 https://doi.org/10.1107/S0021889873009027
  14. Elizabeth A. wood, Crystal Orientation manual, Columbia university press, 1963
  15. H. Fujita, 'Electron radition damage in Cadium-Selenide crystal at liquid-helium temperrature', J. Phys. Soc., Jpn., 20, pp. 109-113, 1965 https://doi.org/10.1143/JPSJ.20.109
  16. V. P. Varshni, 'Far-infrared optical absorption of $Fe^2+$in ZnSe', Physica, vol. 34, pp. 149-154, 1967 https://doi.org/10.1016/0031-8914(67)90062-6
  17. Segall, B. and Marple, D. T. F., in : M. Aven and J. S. Prenerin (Eds), Physics and Chemistry of Compounds, North-Holland, Amsterdam, pp. 340-349, 1967
  18. Shay, J. L. and Wernick, J. H., Ternary chalcopyrite semiconductor : electronic properties, and applications, pergamon, chap. 4, 1975
  19. 홍광준, 홍명석, '수직 Bridgman 법에 의한 CdTe단결정 성장과 특성', 센서학회지, 제14권, 제6호, pp. 869-878, 2005
  20. 홍광준, 홍명석, 김장복, 'Photoluminescience properties for $CdIn_2Te_4$ single crystal grown by Bridgman method', 센서학회지, 제15권, 제6호, pp. 379-385, 2006 https://doi.org/10.5369/JSST.2006.15.6.379
  21. 홍광준, 박창선, 'Hot Wall epitaxy(HWE)법에 의해 성장된 $AgInS_2$박막의 광전류 온도 의존성', 센서학회지, 제16권, 제1호, pp. 1-6, 2007 https://doi.org/10.5369/JSST.2007.16.1.001