DOI QR코드

DOI QR Code

Antioxidative Effects of Mugwort (Artemisia vulgaris L.) Extracts Diet on ICR Mouse Skin

애엽 추출물 섭취가 ICR 마우스의 피부조직에 미치는 항산화 효과

  • Park, Si-Hyang (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Cho, Duck-Moon (Dept. of Food and Nutrition, Dongbusan College) ;
  • Choi, Gyeong-Lim (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Yeung-Joon (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Jin-Ho (Division of Food Science and Biotechnology, Pukyong National University)
  • 박시향 (경상대학교 해양과학대학 해양생명과학부/해양산업연구소) ;
  • 조득문 (동부산대학 식품영양과) ;
  • 최경림 (경상대학교 해양과학대학 해양생명과학부/해양산업연구소) ;
  • 최영준 (경상대학교 해양과학대학 해양생명과학부/해양산업연구소) ;
  • 최진호 (부경대학교 식품생명공학부)
  • Published : 2007.12.31

Abstract

The feeding effects of mugwort (Artemisia vulgaris L.) extracts (ME) on the anti-oxidative actions of ICR mouse skin was investigated. To study the antioxidative effects of ME on ICR mouse skin, female ICR mice were grouped into basic diet group (control), ascorbic acid diet group (AA-2.5, AA-5.0, AA-10.0 and AA-20.0 mg/kg BW/day) as a positive control and experimental diet group (mugwort extract; ME-25, ME-50, ME-100, and ME-200 mg/kg BW/day) and fed for 10 weeks. Protein contents in ME-50, ME-100, and ME-200 feeding group were increased ($3.1%{\sim}11.1%$) and hydroxyl radical contents were significantly decreased ($10.4%{\sim}17.4%$) compared to control group. Oxidative stress signals and oxidized protein contents were significantly reduced to the range of 15.3 to 17.1% in ME-100 and ME-200 groups. Also, superoxide dismutase (SOD) activity was significantly increased to the range of 15.0% to 23.3% in ME-100 and ME-200 groups. Catalase activities were significantly increased ($14.0%{\sim}36.9%$) in all groups in a dose-dependent pattern. Antioxidative ability of ME showed similarity to that of ascorbic acid.

애엽 추출물에 대한 ICR 마우스의 피부 조직에 대한 항산화작용 및 산화적 스트레스에 미치는 영향을 조사하였다. 애엽 추출물(mugwort extract: ME)을 섭취한 식이군의 경우, 추출물의 농도에 따라 피부조직의 단백질 함량이 대조군에 비해 $3.1%{\sim}11.1%$ 증가하였다. 활성산소 중 히드록시 라디칼 함량은 애엽 추출물 식이군에서 $10.4%{\sim}17.4%$의 유의적인 감소 효과가 인정되었으며, 그리고 산화적 스트레스로써 산화단백질의 함량도 애엽 추출물 식이군(ME-100, ME- 200)이 대조군에 비해 각각 15.2%와 17.1%의 유의적인 감소를 보였다(p<0.05). 과산화지질함량은 애엽 추출물의 농도 증가에 따라 감소되는 경향을 보여주었으나, 통계적인 유의성은 없었다. 수퍼옥시드 디스무타아제 활성은 ME-100 군과 ME-200 군에서 각각 15.0%와 23.3%의 유의적인 증가가 있었고, 또한 애엽 추출물의 농도가 증가할수록 카탈라아제 활성도 증가하는 것으로 나타났다. 애엽 추출물의 섭취가 피부의 활성산소를 제거하고 산화적 스트레스를 억제하며, 항산화효소의 활성을 증가시켜 피부의 노화현상을 억제시키는 효과가 있음을 확인할 수 있었다. 강력한 항산화제인 아스코르브산과 비교하여도 손색이 없는 높은 활성을 보였다. 이와 같은 결과는 피부 건강기능 식품과 음료 소재로서 애엽의 이용 가능성을 제시한다.

Keywords

References

  1. Fuchs J, Stefan W, Maurizio P, Norber G, Thomas H, Lester P, Roland K. 2003. HPLC analysis of vitamin E isoforms in human epidermis: Correlation with minimal erythema dose and free radical scavenging activity. Free Radical Biol Med 34: 330-336 https://doi.org/10.1016/S0891-5849(02)01293-5
  2. Simon C, Ilona K, Tramposch KM. 1992. Effects of all-trans retinoic acid on UVB-irradiated and non-irradiated hairless mouse skin. J Invest Dermatol 98: 248-260 https://doi.org/10.1111/1523-1747.ep12556066
  3. Francesco B, Maria L, Lucia M, Claudio P, Antonio T, Domenico T, Francesco C, Antonella S. 1996. Flavonoids as potential protective agents against photo-oxidative skin damage. Int J Pharm 145: 87-94 https://doi.org/10.1016/S0378-5173(96)04728-X
  4. Harman D. 1984. Free radical theory of aging: the free radical diseases. AGE 7: 111-131 https://doi.org/10.1007/BF02431866
  5. Black H. 1987. Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem Photobiol 46: 213-221 https://doi.org/10.1111/j.1751-1097.1987.tb04759.x
  6. Sies H. 1986. Biochemistry of oxidative stress. Angewandte Chemistry 25: 1058-1071 https://doi.org/10.1002/anie.198610581
  7. Cho YH. 2005. Skin, nutrition and functional foods. Food Science and Industry 38: 8-15
  8. Kim NI. 2005. Role of vitamins and minerals on skin care and beauty. Food Science and Industry 38: 16-25
  9. Bogden JD, Bendich A, Kemp FW, Bruening KS, Skurnic JH, Denny T, Baker H, Louria DB. 1994. Daily micronutrient supplements enhance delayed hypersensitivity skin test responses in older people. Am J Clin Nutr 60: 437-447 https://doi.org/10.1093/ajcn/60.3.437
  10. Karla W, Mohsen M. 1994. Evaluation of the photoprotective effect of oral vitamin E supplementation. Arch Dermatol 130: 1257-1261 https://doi.org/10.1001/archderm.130.10.1257
  11. 전국한의과대학본초학교수공편저. 1995. 본초학. 영림사, 서울. p 405-406
  12. Kim BN, Lee KS, Song BK. 2000. A study on the hemostatic effects of Artemisiae asiaticae herba aqua-acupuncture and gelatin aqua-acupuncture. J Oriental Gynecology 13: 46-59
  13. Kim YP, Lee SC. 1987. Superoxide dismutase activites in the human skin. The biological role of reactive oxygen species in skin. University of Tokyo Press, Tokyo. p 225-320
  14. Lowry OH, Roseborough NJ, Farr LA, Randall RJ. 1951. Protein measurement with the Folin-phenol reagent. J Biol Chem 193: 265-275
  15. Halliwell B, Gutteridge JMC. 1981. Formation of a thiobarbituric acid-reactive substance from deoxyribose in the presence of iron salts. FEBS Lett 128: 347-350 https://doi.org/10.1016/0014-5793(81)80114-7
  16. Thurman RG, Ley HG, Scolz R. 1987. Hepatic microsomal ethanol oxidation. Eur J Biochem 25: 420-430 https://doi.org/10.1111/j.1432-1033.1972.tb01711.x
  17. Choi JH, Yu BP. 1990. Unsuitability of TBA test as a lipid peroxidation marker due to prostaglandin synthesis in the aging kidney. AGE 13: 61-64 https://doi.org/10.1007/BF02432391
  18. Levine RL, Garland CN, Oliver AA, Climent AG, Lenz BA. 1990. Determination of carbonyl content in oxidatively modified proteins. In Methods in Enzymology. Academic press, New York. Vol 186, p 464-478
  19. Oyanagui Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 42: 290-296 https://doi.org/10.1016/0003-2697(84)90467-6
  20. Rigo A, Rotilio G. 1977. Simultaneous determination of superoxide dismutase and catalase in biological materials by polarography. Anal Biochem 81: 157-166 https://doi.org/10.1016/0003-2697(77)90609-1
  21. Darr D, Combs S, Dunston ST, Manning S, Pinnell S. 1992. Topical vitamin C protects porcine skin from ultraviolet radiation-induced damage. Br J Dermatol 127: 247- 253 https://doi.org/10.1111/j.1365-2133.1992.tb00122.x
  22. Yamamoto Y. 2001. Role of active oxygen species and antioxidants in photoaging. J Dermatol Sci 27: 1-4 https://doi.org/10.1016/S0923-1811(01)00120-7
  23. Qiong G, Lester P. 2000. Ascorbate-dependent recycling of the vitamin E homologue trolox by dihydrolipoate and glutathione in murine skin homogenates. Free Radic Biol Med 29: 368-374 https://doi.org/10.1016/S0891-5849(00)00309-9
  24. Vaule H, Leonard SW, Traber MG. 2004. Vitamin E delivery to human skin: studies using deuterated α- tocopherol measured by APCI LC-MS. Free Radical Biol Med 36: 456-463 https://doi.org/10.1016/j.freeradbiomed.2003.11.020
  25. Francesco B, Maria L, Lucia M, Claudio P, Antonio T, Domenico T, Francesco C, Antonella S. 1996. Flavonoids as potential protective agents against photo-oxidative skin damage. Int J Pharm 145: 87-94 https://doi.org/10.1016/S0378-5173(96)04728-X
  26. Choi BB, Lee HJ, Bang SK. 2004. Studies on the amino acid, sugar analysis and antioxidative effect of extracts from Artemisia sp. Korean J Food Nutr 17: 86-91
  27. Ryu SN, Kang SS, Kim JS, Ku BI. 2004. Quantitative analysis of eupatilin and jaceosidin in Artemisia herba. Korean J Crop Sci 49: 452-456
  28. Park SK, Park JC. 1994. Antimicrobial activity of extracts and coumaric acid isolated from Artemisia princeps var. orientalis. Korean J Biotechnol Bioeng 9: 506-511

Cited by

  1. Effect of Fermented Artemisiae Argyi Folium on Human Hepatoma Cell Line HepG2 Activity vol.28, pp.3, 2013, https://doi.org/10.6116/kjh.2013.28.3.107