
서비스 지향적인 효율적인 클러스터 서버 구축 및 관리 371

서비스 지향적인 효율적인 클러스터 서버 구축 및 관리

채 희 성†․송 하 윤††․김 한 규††․이 기 철†††

요 약

현대의 서버 시스템은 대부분의 경우 클러스터 시스템으로 이루어지어 가능한 많은 사용자를 지원할 뿐만 아니라 가능한 많은 어플리케이

션을 지원하는 것을 목적으로 하는 서비스 지향 클러스터 시스템이다. 클러스터 시스템 아키텍쳐의 발전으로 자바 프레임웍에 기반한 미들웨어

어프로치가 발전하고 있다. 미들웨어에 의한 방법은 서버 시스템의 성능과 어플리케이션의 활용도를 보장하면서도 서버 시스템 구축을 위한 대

부분의 노력을 덜어준다.

본 연구에서는 JMX를 이용하여 클러스터 시스템의 손쉬운 구현과 관리를 달성할 수 있는 새로운 클러스터 시스템을 소개한다. 일단 클러스

터 시스템의 구축과 구성단계를 보이며, 어플리케이션과 시스템 양자에 걸쳐서 손쉬운 구축과 확장, 그리고 관리가 미들웨어에 기반한 시스템

에서 이루어짐을 보인다. 덧붙여 서비스 지향 클러스터 시스템이 미들웨어에 기반하여 우수한 성능을 보임을 성능 평가 실험 결과를 통하여 검

증하였다. 기본적인 성능 평가 결과는 서버의 가용성, 그리고 로드 밸런싱과 스케쥴링 알고리즘의 효율성을 검증하였다. 특히, 우리의 서비스기

반 스케줄링 방법이 정상부하시 적재불균형문제와 과부하시의 대처능력에서 타 방법에 비해 우수함을 보였다.

키워드 : 클러스터 관리, 자바 매니지먼트 익스텐션, 미들웨어, 서비스 지향 클러스터 서버

Efficient Cluster Server Construction and Management

for Service Orientation

Hee Seong Chae†․Ha Yoon Song††․Han-gyoo Kim††․Kee Cheol Lee†††

ABSTRACT

Modern server systems are usually composed in the form of cluster systems in order to serve not only as many users but also as

many kinds of applications as possible. The progression of the cluster system architecture leads in a middleware approach based on the

Java framework. The middleware approach alleviates the efforts for the construction and the management of a server system but still

preserves its performance and applications on the server. In this research, we introduce a new clustering scheme for the easy construction

and maintenance of a cluster server system with the Java Management Extensions. We first demonstrate the construction and

configuration process. Our experiment sets can verify that it is easy to construct, expand and manage a middleware based cluster system

as well as the applications which reside on it. In addition, we can achieve reasonable performance on our service oriented clustered system

with the help of state-of-the-art middleware. The experimental results of performance demonstration contain the availability of a server,

and the effectiveness of load balancing and scheduling mechanisms. Especially, our service oriented scheduling mechanism was shown to

successfully manage load imbalance under the normal load and cope with the overloaded situations, compared with other known scheduling

mechanisms.

Key Words : Cluster management, Java management extensions, Middleware approach, Service oriented cluster servers

1. Introduction1)

The rapid development of the wired and wireless

network technologies has made various computing

services indispensable. Any user request is transferred to

the corresponding server through wired or wireless

 †준 회 원 :홍익대 컴퓨터공학과 박사과정
 ††정 회 원 :홍익대학교 컴퓨터공학과 부교수
†††종신회원:홍익대학교 컴퓨터공학과 교수
 논문접수: 2007년 3월 30일, 심사완료：2007년 9월 13일

networks. As the numbers of users and the types of

applications are increasing, server capacities are required

to progress more and more. Generally speaking, it is not

possible for a single node (processor) server to process

such huge amounts and various kinds of application

demands. Accordingly the internal structure of a server is

required to be a cluster system with many computing

nodes with connections between nodes.

Cluster systems provide four primary benefits over

single larger machines: high scalability, availability,

372 정보처리학회논문지 A 제14-A권 제6호(2007.12)

performance and cost effectiveness. And they may show

high reliability in extreme situations.

Previous studies such as [2, 3, 5, 9, 17, 18] show the

characteristics of cluster systems extensively. The

capabilities required for a cluster system to be a server

can be summarized as follows:

-Must serve as many users as possible: User

serviceability.

-Must serve as many kinds of applications as possible:

Application serviceability.

-Must be easy to construct: Constructability.

-Must be easy to expand: Expandability.

-Must easily remove and recover any malfunctioning

node without severe system

overhead: System manageability.

-Must easily manage any server performance-related

elements: Performance.

-Must easily manage applications on the server:

Application manageability.

The efforts have long been made to construct the

cluster systems that meet the above requirements. The

system capabilities that the cluster systems must hold

have already been sufficiently studied in the field of

distributed computing and GRID computing. However,

other than the computational GRID, a cluster system for

general applications requires various capabilities. The

current issue is how easily a cluster system can be built

and how flexibly it can be managed. CORBA[15] has

been a representative framework for these purpose, but

still very out-of-date for the present construction and

management requirements. Considering that the service

handlers for providing various application services are

being developed in Java, a Java-based management

framework is required. In the cluster system

environments, the Java Management Extensions(JMX)

shows very efficient functionalities in managing service

handlers written in Java[14, 23].

We have designed and constructed a cluster system

with JMX[13] with enough care in order to meet

aforementioned requirements, and we will verify in this

paper that our clustered servers can fulfill these

requirements. Our experiences show that the cluster

systems meet all the requirements suggested. For

example, two man-months were consumed for the

construction of a server system, and as service requests

were added, its performance remained satisfactory.

We will describe detailed issues as follows: In Section

2 we will review the Java Management Extensions. In

Section 3 we will show the overall construction and

configuration process of our cluster system. Section 4 will

show the management details. Sections 5 and 6 will show

the availability test and the effect of various loads

balancing mechanism of our cluster system, respectively.

We will conclude this paper in the final section.

(Fig. 1) Overall structure of JMX.

2. Related Work: Introduction to Java Management

Extensions

The Java Management Extensions (JMX) is a

management framework, so called a middleware,

suggested by Sun Microsystems[14, 21, 23]. JMX

basically consists of three hierarchical levels:

Instrumentation level, Agent level, and Distributed

Services level. The data and application programs, which

must be managed, can be separated independent of the

Manager level. JMX also has a set of APIs for the

management protocol. The basic structure of JMX is

shown in (figure 1).

Since JMX is based on the Java technologies, it can

seamlessly cooperate with other Java based technologies

such as EJB, Jini, JDMK (Java Dynamic Management

Kit), and so on. JMX also supports APIs for the network

management such as SNMP so that every network

management feature can be available. We introduced JMX

since heterogeneous server architectures can be a

seamless part of a cluster system only if the servers

incorporate the Java technologies. The unit of the

management object for JMX is an application that enables

Load Balancer to distribute jobs over servers easily for

the efficient load balancing. With these features a cluster

서비스 지향적인 효율적인 클러스터 서버 구축 및 관리 373

system with JMX can be regarded as a viable solution to

configure and manage a cluster system based on the Java

technologies. And it is true that most of the emerging

applications written in Java thus require Java compatible

environments[1, 10].

2.1 Instrumentation Level

The Instrumentation level provides any Java technology

based object with instant manageability. This level is

aimed at the entire developer community that utilizes any

Java technology. This level provides the management of

Java technologies which are standard across all the

industries[21]. The components of this level are MBeans

(Managed Beans), Notification Model, and MBean

Metadata Classes. MBeans are categorized by Standard

MBeans, Dynamic MBeans, Open MBeans, and Model

MBeans.

(Fig. 2) Cluster server internals.

2.2 Agent Level

The Agent level provides management Agents. JMX

Agents are containers that provide core management

services which can be dynamically extended by adding

JMX resources. This level is aimed at the management

solution development community, and provides

management through the Java technologies. MBean Server

and Agent Services are the core parts of this level.

MBean Server, a component for MBean registration,

supports a management interface for each MBean so that

the management system can recognize each MBean.

Agent Service is an object of the management operation

for MBeans registered in the server. It has Dynamic

Class Loading, Monitors, Timers, and the Relation

Service.

2.3 Distributed Services Level

The so-called Manager level provides management

components that can operate as Manager or Agents for

the distribution and consolidation of management services.

This level is aimed at the management solution

development community, and completes the management

through Java technologies provided by the Agent level.

Manager and Agents can communicate through the

adapters with management protocol APIs, or via a

connector client to contact the connector server in the

Agent. Available APIs are SNMP, IIOP protocol adaptor,

and WBEM[4, 7, 20, 23].

(Fig. 3) Conceptual structure of cluster.

3. Cluster System: Construction then Configuration

In this section, we will show the architecture to build

up a cluster system and then present a cluster

configuration. We used JMX as a middleware for our

cluster system construction. The manageable object for

JMX is an application program based on the Java

technologies such as EJB (Enterprise Java Beans). Each

application program will be mapped on an MBean, and

each MBean will be registered on the MBean server that

resides on the same Java virtual machine where the

application program is under execution. In addition, the

Monitor of this MBean server (one of the Agent

Services) manages the applications with their status

information. The Manager system can recognize and

resolve any erroneous situation by the reception of an

event from Monitor whenever Monitor senses an

exceptional situation such as the halt of an MBean or

overloading of an MBean, etc. For this purpose, Agent

should be able to communicate with the Manager system.

The communication can be made by APIs for SNMP[19,

20]. Alternatively, the connector server on Agent and the

connector client on the Manager system can build

communication between Agent and the Manager system.

374 정보처리학회논문지 A 제14-A권 제6호(2007.12)

For the actual system implementation, the second

communication scheme was used.

(Figure 2) shows the inside of the server, which is

based on EJB and managed by JMX. (Figure 3) shows

the overall structure of the cluster system in the simplest

configuration. There is one Manager in the system, which

manages the whole cluster system. This simple structure

can be used to configure the cluster system without any

performance degradation. However, the SPoF (Single

Point of Failure) problem can occur whenever the

Manager system becomes faulty, which is an example of

a fatal situation with very low availability[11]. However,

our approach allows advanced configuration of a cluster

system as the following subsection shows.

(Fig. 4) Alternative configuration of cluster.

3.1 Dynamic Configuration of the Cluster

In (figure 4), five other configurations are suggested

for dynamic clustering. Each configuration has its own

cons and pros, which are trade-offs between the

availability and resources usage efficiency.

(A) is the basic architecture model discussed in (figure

3), bearing the possibility of SPoF problem. (B), (C), and

(D) are alternative architectural models to solve the

possible SPoF problem. Because the manager of a

conventional cluster system is only a load balancer, the

extension to the multiple manager scheme such as (B),

(C) and (D) has been rarely discussed[6, 8, 12]. On the

other hand, our approach is ready for the extension to

(B), (C) and (D), and a multiple manager scheme can be

a solution to the SPoF problem. Several Manager systems

are employed to guarantee the basic fault tolerance in

case of the failure of a Manager system. However, these

models have the problems such as the redundancy of

management information and the high communication

overhead between servers and Managers, which may

cause the resource extravagance. (E) shows a hierarchical

model with a topmost Manager system that manages

each sub-Manager system. This model is much more

scalable than the other models, but the extra hierarchy

requires additional computing and communication

resources. In addition, the sub-Manager system must be

extended in a way that the nodes with the sub-Manager

can bear both Manager and the top level of Agent.

(Fig. 5.) Structure of management of objects.

(Fig. 6) Message format

3.2 Managed Objects

Manager manages three sorts of objects: ServerInfo,

MBeanServerInfo, and MBeanInfo. ServerInfo has the

information of a node where Agent resides.

MBeanServerInfo has the information of the MBean

server created by the Agent. MBeanInfo stands for the

management information of each MBean registered on the

MBean server. (Figure 5) shows the structure of the

Manageable object and attributes of each object. We omit

detailed explanation about the attributes since attributes

of each object are self descriptive.

3.3 Message Formats and Types

(Figure 6) shows the message format for the

communication between Manager and Agents defined for

cluster management in this paper. <Table I> shows the

descriptions of each message format and the six message

types defined in this paper.

3.4 Cluster System Implementation

The actual cluster system suggested in this paper was

implemented and tested. The configuration is basically

similar to (figure 4-(A)). The implemented testbed is

composed of normal computers (i.e., without Manager) and

computers with Manager. Each node has heterogeneous

서비스 지향적인 효율적인 클러스터 서버 구축 및 관리 375

Message Format Descriptions Message Type Descriptions

ManagerID The identifier of Manager for communication.
MBean Information

Request

Manager's request of MBean information

managed by Agent.

AgentID The identifier of Agent for communication.
MBean Information

Transfer

Agent's reply of MBean information requested

by Manager.

Message Type

(with six sub-

fields)

Message type is one of the followings.

(1) MBean information request

(2) MBean information transfer

(3) Event notification

(4) MBean server status information

(5) MBean server status information transfer

(6) IsAlive

Event Notification
Transfer of an event from a MBean or the

MBean Server to Manager.

EventType

(thrown by a

MBean or the

MBean server)

Event type is one of the followings.

(1) MBean Capacity Full

(2) MBean Server Capacity Full

(3) MBean Capacity Free

(4) MBean Server Capacity Free

MBean Server

Status Information

Request

Manager's request of the status of a MBean

server to Agent.

MBean Name The record of MBeanName.

MBean Server

Status Information

Transfer

Agent's transfer the MBean server status

information.

Variable Binding

List
Contains the MBean or MBean server information. IsAlive Manager's check the living status of nodes.

<Table I> Message format and type descriptions

(Fig. 7) Implementation details.

processors and operating systems (e.g., Windows 2000

Server, Windows 2000 Professional, and Linux). The

Manager server has a connector client for the

communication with Agent. The detailed component

diagram is shown in (figure 7).

The Manager server obtains management information

and notifies it to the management application. Finally the

administrator acquires the overall status of the cluster

system. Each normal node executes its user applications.

Each application is mapped on an MBean and registered

on the MBean server. For the implementation for this

paper, each node has one MBean server to manage

MBeans. The MBean server registers MBeans and Agent

services that manage application programs. Among

various Agent services, Monitor plays the key role to

sense erroneous situations and to throw events for the

notification of errors. Whenever each application starts a

new service for a client, a new MBean will be created

and registered to the MBean server. Monitor checks the

number of MBeans on the server or other related

information specific to MBeans, and throws an

situation-related event so that the whole system

recognizes the error occurrence.

4. Cluster Management

With the JMX based cluster system technologies, a

cluster system can cope with various situations requiring

management as fluent as possible. The most

representative situations have been researched and can be

distinguished. We will see the management solution for

each case one by one. With the support of JMX, it is

very easy to complete these solutions.

We choose the polling scheme from Manager to nodes

intentionally since we can alleviate the extra load of

management to a node. An interrupt scheme from a node

to Manager can burden computational nodes since an

interrupt is a kind of an active mechanism to the node.

Therefore we choose a passive mechanism of polling

from the view of a node. We can also control the period

of polling by simply trimming the polling timer on one

Manager instead of the individual interrupt timers on

376 정보처리학회논문지 A 제14-A권 제6호(2007.12)

multiple nodes. This simplified scheme works very well

in our experiments and can strengthen a node's

serviceability.

-New server addition: a new server can be added

anytime.

-Server removal: any server can be removed.

-Server overload management: the server overloaded

by the concentration of related requests must be

managed.

-Server failure management: the faulty server must be

removed.

4.1 Addition of a new node : (Figure 8)

Servers can be added anytime to cope with the

concentrated user requests. Manager does a major role

for the addition mechanism in cooperation with Load

Balancer.

(1) Manager: checks the aliveness of its nodes and

their management record by sending IsAlive

message. A new node must reply.

(2) Manager: finds a new node starting, assigns a new

ID to the Agent of the node, and sends a message

requesting the information of MBeans and the

MBean server on the server.

(3) Manager: records the information received from the

server, modifies the management information on

MIB of the node, and notifies the addition of the

new node to Load Balancer.

(4) Load Balancer: starts sending jobs to the added

node.

(Fig. 8) Addition of a new node

4.2 Removal of an existing node : (Figure 9)

Any node can be removed anytime for the management

purpose by server administrator. Manager does a main

role.

(Fig. 9) Removal of an existing node

(1) Administrator: sends the information of a

to-be-deleted node to Manager.

(2) Manager: notifies Load Balancer that the node is

out of service - no more jobs can be assigned.

(3) Manager: requests the information of MBeans to

the node to check if the node has jobs on

processing.

(4) The requests of the MBean information are

repeated until there are no jobs on the node.

(5) Manager: updates the management information of

the node.

(6) The node can be physically deleted.

4.3 Management of an overloaded node (load balancing) :

(Figure 10)

An overloaded server must be handled in order to

maximize the overall server performance. Otherwise, an

overloaded node will be a critical bottleneck for the

server system and maybe a faulty one in final.

(Fig. 10) Handle of an overloaded node

서비스 지향적인 효율적인 클러스터 서버 구축 및 관리 377

(1) Situation: Either the MBean capacity or the

MBeanServer capacity on a node exceeds its

predefined capacity.

(2) Monitor: recognizes an overloading situation and

notifies to Manager through an event.

(3) Manager: informs Load Balancer that the node

cannot receive any more service request.

(4) Manager: requests ServiceCnt information to check if

other nodes can process more jobs. Each node has

its own avgServiceTime, and must check if it can

reduce the avgServiceTime. Nodes having ServiceCnt

less than their capacity can process additional

requests.

(5) Manager: notifies Load Balancer that these nodes are

available to serve additional requests.

4.4 Management of a node failure : (Figure 11)

A failed node must be removed and/or replaced to

keep the overall server performance.

(1) Monitor: checks the aliveness of nodes by sending

an IsAlive message periodically, and reports to

Manager.

(2) Manager: notifies Load Balancer that a node is

halted.

(3) Load Balancer: stops the assignment of new jobs

to the node.

(4) Manager: notifies Administrator.

(5) Administrator: removes the node from the cluster.

(Fig. 11) Handle of a node failure.

5. Availability Verification

How the system responds for the construction and

management of a cluster system will be eventually

reflected in the load balancing performance. Availability

can be achieved by the efficiency of load balancing in our

cluster server. Load balancer of Manager in (figure 7)

does basic load balancing based on

MBeanServerInfo.ServiceCnt which is an attribute of

management objects. A new request will be assigned by

the load balancer to a node with the smallest

MBeanServerInfo.ServiceCnt. We call it a

Service-Oriented (SO) scheduling since it does not

sacrifice resources in order to collect the current status of

clustered nodes. Instead, every possible system resource

is designed to devote to the service for user requests.

We designed various situations to check the availability

of the overall server cluster. We will show three

representative results in the following subsections. The

graph of time versus the accumulated number of allotted

jobs shows the load balancing results. In case a node is

removed or down, the accumulated number for the node

is set to zero to indicate the operation of the node

stopped. These experiments are designed for each node

with tens of jobs alloted and suppose overloaded

situations with the duration of less than an hour. In order

to verify the availability and load balancing (containing

scheduling) respectively, we designed primitive

experiments for each category. We believe that this

approach can verify the performance of our cluster

system in each performance category.

Other complicated load balancing and scheduling

schemes incorporated with our cluster server will be

discussed and the results will be demonstrated in Section 6.

5.1 Case I

(Figure 12) shows the experimental results for the most

common case. A new node 6 was added at minute 3, and

(Fig. 12) one node added and one node removed

378 정보처리학회논문지 A 제14-A권 제6호(2007.12)

jobs started to be assigned to the node between minutes

4 and 5. At minute 9, node 5 was ordered to be removed,

and instantly no new jobs were allotted to the node, and

all the remaining jobs in the node were serviced, and the

node was eventually removed between minutes 12 and 13.

We need to look at what happened to the other nodes.

Especially for node 3, its application or MBean node

processing power was exceeded between minutes 8 and

12, and also frequently exceeded after minute 22, resulting

in no request allotment for the node. We also need to

note minutes 4 to 7. The job allotments to a new node

became busy because it had less requests being

processed. Contrarily, the allotments to the other nodes

slowed down.

5.2 Case II

(Figure 13) is for the case of two nodes added and

one node removed. In addition, the processing capacities

of the applications and MBean nodes of each node were

set to a small number. It can be done by setting

MBeanServerInfo.Capacity and MBeanInfo.Capacity and

the number of MBeans on a node to small numbers. In

other words, the overall server capacity was intentionally

set to low in order to simulate the overload situation.

Two nodes were added between minutes 3 and 5. For

the next 3 minutes, those two nodes started to be allotted

but almost no jobs were allotted to the other nodes. At

minute 10, node 7 was ordered to be removed, and no

new jobs were allotted to it. After it was completely

removed at minute 13, new job allotments to each node

were delayed for 2 or 3 minutes because of limited node

capacities and a small number of active nodes.

(Fig. 13) Two nodes added and one node removed

5.3 Case III

(Figure 14) shows the results for a more special

condition. Three nodes got down, and recovered and

added back to the cluster. Additionally two nodes were

added at minutes 3 and 17, respectively, and they two

started to be allotted 2 or 3 minutes later, limiting the

allotments to the other nodes for the time being. Three

nodes got down at minutes 9, 11, and 14, and added back

to the cluster at minutes 10, 12, and 15, respectively. As

a node got down, this figure clearly shows that more

jobs were allotted to the other nodes. As a node was

newly added or added back, the job allotments to the

other nodes were shown to be smoothened.

(Fig. 14) Three nodes got down, three nodes recovered, and

two nodes added.

6. Load Balancing and Scheduling

Second set of experiments was carried out to prove

that the scheduling of our method works well. The Load

Balancer distributes jobs over cluster system with a

specific scheduling policy. As described in Section 4, the

cluster management and load balancer can handle the load

balancing between nodes with communications to and

from the JMX manager as a part of the cluster

management (subsection 4.3). In this section, our

service-oriented (SO) scheduling mechanism was

compared with the Round-Robin(RR) scheduling[16] and

the Least-Connection(LC) scheduling[24].

The brief description of SO scheduling is based on the

descriptions of other scheduling mechanisms. In RR

scheduling, the status of each node is not considered, and

jobs are distributed to nodes in turn. In LC scheduling,

서비스 지향적인 효율적인 클러스터 서버 구축 및 관리 379

(Fig. 15) Round-Robin Scheduling (Fig. 17) Least-Connection Scheduling

(Fig. 16) Service-Oriented Scheduling (Fig. 18) Average Number of Jobs per Node

for each service request, Load Balancer sends a

notification of new service request to the manager system

that collects the most recent node information from each

node (containing ServiceCnt information), and sends the

latest node information back to Load Balancer.

Accordingly, LC scheduling assigns a job to the node

with least jobs.

In our SO scheduling, when the manager system

receives a request from Load Balancer, it does not collect

the latest information of nodes. Instead, it just sends its

current, already collected, information of the nodes in

MIB back to Load Balancer. RR scheduling does not

utilize yet the existing information while LC scheduling

requires extra network traffic in order to bring up the

up-to-date status of each node. SO scheduling utilizes

relatively recent and already collected information only,

not sacrificing resources and time to collect the most

recent cluster status. Thus, SO scheduling shows the

asymptotically optimized performance of LC scheduling

but with low scheduling overhead.

In these experiments, the same service requests were

generated for each of the scheduling methods, and the

number of jobs being processed by each node was

checked every three minutes. Service request profiles are

designed to cause load imbalance with relatively big jobs

and a small number of jobs in short duration of service

time.

Figures 15 to 17 show the experimental results for an

extreme situation where specific nodes reach their

processing limits, 10 requests per node in these

experiments. In RR scheduling, as shown in (figure 15),

once some limitation is reached (more than 10 requests

per node at time 4), the numbers of jobs assigned are not

balanced among nodes. On the contrary, in our service

oriented scheduling in (figure 16) and LC scheduling as

shown in (figure 17), right after some node limitation is

reached, it can be confirmed that the numbers of jobs get

almost equally distributed among nodes.

380 정보처리학회논문지 A 제14-A권 제6호(2007.12)

Considering that our simple, the service oriented

scheduling method can save most of the information

collection and network traffic time which LC method

must use, our method seems very attractive in terms of

scheduling time and efficiency. We investigated the

average number of allotted jobs per node and the

standard deviation of number of allotted jobs per node.

The average number of allotted requests per node is

depicted in (figure 18). Under the normal load, three load

balancing mechanisms show the similar responses. Under

the overload situation after time 4, SO scheduling reacts

instantaneously to reduce the average node loads, while

RR scheduling remains the same and LC scheduling

shows the delayed reaction. These results show that the

low overhead of SO scheduling mechanism leads in the

prompt load balancing in the overloaded situations.

(Figure 19) shows the standard deviation of number of

allotted requests per node. The standard deviation of

number of allotted jobs per node stands for the measure

of load imbalance. We can verify that RR scheduling does

not concern about load balance while two others

consistently concern about load balancing. The LC

scheduling can minimize the load imbalance under the

normal load but it shows abrupt and prolonged load

imbalance under the overload situation. Our SO

scheduling successfully manages load imbalance under the

normal load and successfully copes with the overloaded

situations. SO scheduling successfully recognizes and

suppresses the load imbalance instantly and distributes

loads over time to smoothen the overloaded requests.

(Fig. 19) Standard Deviation of Number of Jobs per Node

7. Conclusion and Future Works

In this paper we demonstrated the fast construction,

the flexible configuration, and the fluent management of a

cluster system with JMX middleware, which is an

up-to-date Java based resource management framework.

-Fast construction: it takes only two man-month to

construct our cluster server system.

-Flexible configuration: the configuration of a cluster

system is easy and service oriented.

-Fluent management: our system can also dynamically

cope with the various situations of a cluster

management for the high manageability and

availability with very reasonable performance.

For the availability issues, the several scenarios of the

cluster management and application processing were

introduced and the availability of our server system was

tested under each scenario. Since the availability highly

depends on the load balancing mechanism of the cluster,

the load balancing issues have been further studied with

different scheduling mechanisms. It showed our service

oriented load balancing approach was eligible compared to

other complicated mechanisms.

However, the JMX specification still has several

limitations for the cluster system managements. For

example, one Agent cannot have multiple MBean servers.

We hope that the next version of JMX will be improved

so that the much dedicated management can be available

by multiple MBean servers on one Agent for better

clustering environments.

Apart from the suggested cluster system, which is

based on LAN environments, WAN (Wide Area

Network)-based cluster systems can be studied in the

future. The ultimate integration of worldwide networks

will lead to a new topic of the global management. One

of the examples can be the technology that enables Beans

based on the Java technologies, especially the EJB

technology, to be managed in the global environments.

For the global management, the naming of Beans or

servers will be of another issue. We expect Jini will be

one of the possible solutions[22].

References

[1] J. Batheja and M. Parashar, “Adaptive cluster computing

using javaspaces,” IEEE International Conference on Cluster

Computing, pp.323-330, 2001.

[2] E. A. Brewer, “Lessons from giant-scale services,” IEEE

Trans. Internet Computing, Vol.5, No.4(July/Aug.), pp.46-55,

2001.

서비스 지향적인 효율적인 클러스터 서버 구축 및 관리 381

[3] E. V. Carrera and R. Biancini, “Efficiency vs. portability in

cluster-based network servers,” Proceedings of the 8th

Symposium on Principles and Practice of Parallel

Programming, Snowbird, UT, 2001.

[4] J. D. Case, M. Fedor, M. L. Schoffstall, and C. Davin, “Simple

Network management Protocol ({SNMP}),” Internet RFC

1157, 1990.

[5] G. Chen, C. Wang, and F. Lau, “A scalable cluster-based web

server with cooperative caching support,” Computation and

Currency: Practice and Experience 15, 7-8 (June/July),

pp.681-705, 2003.

[6] B. Elbert and B. Martyna, 'Client/Server Computing,' Artech

House, 1994.

[7] J. A. Farrell and H. Kreger, “Web services management

approaches,” IBM Systems Journal, Vol.41, No.2, 2002.

[8] S. Goddard and T. Schoeder, “The sasha architecture for

network-clustered web servers,” High Assurance Systems

Engineering, 2001.

[9] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler,

“Scalable, distributed data structures for internet service

construction,” Proceedings of the 4th USENIX Symposium

on Operating Systems Design and Implementation

(OSDI2000), 2000.

[10] K. A. Hawick and H. A. James, “Dynamic cluster

configuration and management using javaspaces,” IEEE

International Conference on Cluster Computing. pp.145-148,

2001.

[11] S. Horman, “Creating linux web farms (linux high availability

and scalability),” Tech. Rep.,

http://www/vergenet.net/linux/has/, Nov. 2000.

[12] D. Ingram, S. Shrivastava, and F. Panzieri, “Constructing

dependable web services,” IEEE Trans. Internet Computing,

Vol4, No.1(Jan./Feb.), pp.25-33, 2000.

[13] H. Kim, H. Y. Song, and K. C. Lee, “Dynamic configuration

and management of clustered system with JMX,” Lecture

Notes in Computer Science 2662, pp.858-867, 2003.

[14] H. Kreger, “Java management extensions for application

management,” IBM Systems Journal, Vol.40, Vol.1, 2001.

[15] D. S. Linthicum, “CORBA 2.0?,” Open Computing, Vol.12,

No.2(Feb.), 68-, 1995.

[16] J. B. Nagle, “On packet switches with infinite storage,” IEEE

Trans. Communications, Vol.35, No.4(Apr.), pp.435-438,

1987.

[17] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,

W. Zwaenepoel, and E. Nahum, “Locality-aware request

distribution in cluster-based network servers,” Proceedings

of the 8th ACM Conference on Architectural Support for

Programming Languages and Operating Systems. San Jose,

CA, pp.205-216, 1998.

[18] Y. Saito, B. N. Bershad, and H. M. Levy,, “Manageability,

availability and performance in porcupine : A highly scalable

internet mail service,” Proceedings of the 17th ACM

Symposium on Operating Systems Principles, Charlston, SC,

1999.

[19] W. Stalling, 'SNMP, SNMP v2, and CMIP,' Addison Wesley,

1993.

[20] Sun-Microsystems, 'Java management extensions SNMP

manager APIs,' 1999a.

[21] Sun-Microsystems, 'JMX white paper,' 1999b.

[22] Sun-Microsystems, 'Jini architecture specification,' Vol.1,

No.2, 2001

[23] Sun-Microsystems, 'Java management extensions

specifications,' Vol.1, No.4, 2003.

[24] W. Zhang, “Linux virtual server for scalable network

services,” Ottawa Linux Symposium, 2000.

채 희 성

e-mail : winkatu@empal.com

2001년 홍익대 컴퓨터공학과(학사)

2003년 홍익대 컴퓨터공학과(석사)

2005년-현재 홍익대 컴퓨터공학과

박사과정

관심분야 :웹 학습, 분산 시스템

송 하 윤

e-mail : hayoon@wow.hongik.ac.kr

1991년 서울대학교 계산통계학과(학사)

1993년 서울대학교 전산과학과(석사)

2001년 University of California - Los

Angeles Computer Science

Department (박사)

2001년～현재 홍익대학교 컴퓨터공학과 부교수

관심분야 :분산 센서 시스템, 고고도 네트워킹

382 정보처리학회논문지 A 제14-A권 제6호(2007.12)

김 한 규

e-mail : hkim@ximeta.com

1981년 서울대학교 기계공학과(학사)

1984년 서울대학교 기계공학과(석사)

1994년 University of California-

Berkeley 전산학과(박사)

1994년～현재 홍익대학교 컴퓨터공학과

 부교수

관심분야 :네트워크, 분산 시스템

이 기 철

e-mail : klee1@hongik.ac.kr

1977년 서울대학교 전자공학과(학사)

1979년 한국과학원 전산학과(석사)

1987년 University of Wisconsin-Madison

전기 및 컴퓨터공학과(박사)

1989년～현재 홍익대학교 컴퓨터공학과

 교수

관심분야 :기계학습, 시스템프로그래밍 등

