1.

{0
10

4
o
My

SHAH MH 7= 2 2

skt o0] o0l = = ul ¥y

Aul s AkE]l aeHd FEEEH AW 75 9 e

Moaod-s s Y s o 7 Y
(=] ok

defe] A Alegle tiRge] A FelE Ali o o]folAo] Thge W AREAE ALY P ofe} Jed B o]EEo]
Ag Adshs RS 4o 5 Ale=dlo|tt, | aE Algl op7ElAe] W o Ant Zode] 7)g S ol
olzz A7} wdsta gtk mEdeldl oF P Hﬂi Aedle] st ojEgAolde] B4eE HAIME A Axd 73S 9F o
2o =gg dojEth

2 dTelAE IMXE o]&ste] FelzE Axde] &4 7Y #eE ST e M2 FYaH A2P 2 dd Fea
B Alzgle] 723 FALAS woln, ojEHAle| st Axgl gt AAN E4E THI B4, agn Bzt mEdeld 7w Az
oAl e]Fold g WAtk Blge] Aula AF FexE Alzgo] mEdeld r|utste] 5@ S nds A A7t 49 AAE el A
Fakalth 7184 Ae @7r Avhs Ao 784, an 2= Bdy ﬂl%%l daFe] 84S ATarh 53], e An7]
W 2AEY o] AAReA AARTEEAL FHEetA o] AT A B el wE ¢8-S molnt

IIE : EYAH #2|, Kb HUX|ME AAHM 0|SH0, MHA K& S2H2AE MH

Efficient Cluster Server Construction and Management
for Service Orientation

+H

Hee Seong Chae' - Ha Yoon Song™ - Han-gyoo Kim™ - Kee Cheol Lee

ABSTRACT

Modern server systems are usually composed in the form of cluster systems in order to serve not only as many users but also as
many kinds of applications as possible. The progression of the cluster system architecture leads in a middleware approach based on the
Java framework. The middleware approach alleviates the efforts for the construction and the management of a server system but still
preserves its performance and applications on the server. In this research, we introduce a new clustering scheme for the easy construction
and maintenance of a cluster server system with the Java Management Extensions. We first demonstrate the construction and
configuration process. Our experiment sets can verify that it is easy to construct, expand and manage a middleware based cluster system
as well as the applications which reside on it. In addition, we can achieve reasonable performance on our service oriented clustered system
with the help of state-of-the-art middleware. The experimental results of performance demonstration contain the availability of a server,
and the effectiveness of load balancing and scheduling mechanisms. Especially, our service oriented scheduling mechanism was shown to
successfully manage load imbalance under the normal load and cope with the overloaded situations, compared with other known scheduling
mechanisms.

Key Words : Cluster management, Java management extensions, Middleware approach, Service oriented cluster servers

Introduction networks.

371

As the numbers of users and the types of

The rapid development of the wired and wireless
network technologies has made various computing
services indispensable. Any user request is transferred to
the corresponding server through wired or wireless

applications are increasing, server capacities are required
to progress more and more. Generally speaking, it is not
possible for a single node (processor) server to process
such huge amounts and various kinds of application
demands. Accordingly the internal structure of a server is
required to be a cluster system with many computing
nodes with connections between nodes.

T & 3] 5o AFE et wkaA . . -
R % m:ﬁwu %H% 4 s Cluster systems provide four primary benefits over
Tt FA39: Fooistal ATy Wy single larger machines: high scalability, availability,
=R 20073 3¢ 30°,, AALeEE 1 2007d 9¢Y 13Y

372 BEMeIEl=2X A M14-AT [6=(2007.12)

performance and cost effectiveness. And they may show
high reliability in extreme situations.

Previous studies such as [2, 3, 5, 9, 17, 18] show the
characteristics of cluster systems extensively. The
capabilities required for a cluster system to be a server
can be summarized as follows:

-Must serve as many users as possible: User
serviceability.

-Must serve as many kinds of applications as possible:
Application serviceability.

-Must be easy to construct: Constructability.

-Must be easy to expand: Expandability.

-Must easily remove and recover any malfunctioning
node without severe system

overhead: System manageability.

-Must easily manage any server performance-related
elements: Performance.

-Must easily manage applications on the server:
Application manageability.

The efforts have long been made to construct the
cluster systems that meet the above requirements. The
system capabilities that the cluster systems must hold
have already been sufficiently studied in the field of
distributed computing and GRID computing. However,
other than the computational GRID, a cluster system for
general applications requires various capabilities. The
current issue is how easily a cluster system can be built
and how flexibly it can be managed. CORBA[15] has
been a representative framework for these purpose, but
still very out-of-date for the present construction and
management requirements. Considering that the service
handlers for providing various application services are
being developed in Java, a Java-based management
framework is required. In the cluster system
environments, the Java Management Extensions(JMX)
shows very efficient functionalities in managing service
handlers written in Javall4, 23].

We have designed and constructed a cluster system
with JMX[13] with enough care in order to meet
aforementioned requirements, and we will verify in this
paper that our clustered servers can fulfill these
requirements. Our experiences show that the cluster
systems meet all the requirements suggested. For
example, two man-months were consumed for the
construction of a server system, and as service requests
were added, its performance remained satisfactory.

We will describe detailed issues as follows: In Section

2 we will review the Java Management Extensions. In
Section 3 we will show the overall construction and
configuration process of our cluster system. Section 4 will
show the management details. Sections 5 and 6 will show
the availability test and the effect of various loads
balancing mechanism of our cluster system, respectively.
We will conclude this paper in the final section.

Management
Applications

NV

Distributed Services Level

Agent Level
Y A S G
/ N\

Instrumentation Level

[
Managed
Resources

(Fig. 1) Overall structure of JMX.

2. Related Work: Introduction to Java Management

Extensions
The Java Management Extensions (JMX) is a
management framework, so called a middleware,

suggested by Sun Microsystems[14, 21, 23]. JMX
basically hierarchical levels:
and Distributed

Services level. The data and application programs, which

consists of three

Instrumentation level, Agent level,

must be managed, can be separated independent of the
Manager level. JMX also has a set of APIs for the
management protocol. The basic structure of JMX is
shown in (figure 1).

Since JMX is based on the Java technologies, it can
seamlessly cooperate with other Java based technologies
such as EJB, Jini, JDMK (Java Dynamic Management
Kit), and so on. JMX also supports APIs for the network
management such as SNMP so that every network
management feature can be available. We introduced JMX
since heterogeneous server architectures can be a
seamless part of a cluster system only if the servers
incorporate the Java technologies. The wunit of the
management object for JMX is an application that enables
Load Balancer to distribute jobs over servers easily for
the efficient load balancing. With these features a cluster

system with JMX can be regarded as a viable solution to
configure and manage a cluster system based on the Java
technologies. And it is true that most of the emerging
applications written in Java thus require Java compatible
environments[1, 10].

2.1 Instrumentation Level

The Instrumentation level provides any Java technology
based object with instant manageability. This level is
aimed at the entire developer community that utilizes any
Java technology. This level provides the management of
Java technologies which are standard across all the
industries[21]. The components of this level are MBeans
Model, and MBean
Metadata Classes. MBeans are categorized by Standard
MBeans, Dynamic MBeans, Open MBeans, and Model
MBeans.

(Managed Beans), Notification

I Management System |]

Java Virtual
Machine

‘ Connector

Monitor

Java - Based Applications

(Fig. 2) Cluster server internals.

2.2 Agent Level

The Agent level provides management Agents. JMX
Agents are containers that provide core management
services which can be dynamically extended by adding
JMX resources. This level is aimed at the management
solution development community, and provides
management through the Java technologies. MBean Server
and Agent Services are the core parts of this level.
MBean Server, a component for MBean registration,
supports a management interface for each MBean so that
the management system can recognize each MBean.
Agent Service is an object of the management operation
for MBeans registered in the server. It has Dynamic
Class Loading, Monitors, Timers, and the Relation

Service.

2.3 Distributed Services Level

The so-called Manager level provides management

MEIA RGAel 2280 S{AH MU 725 2 22 373

components that can operate as Manager or Agents for
the distribution and consolidation of management services.
This level is aimed at the management solution
development community, and completes the management
through Java technologies provided by the Agent level
Manager and Agents can communicate through the
adapters with management protocol APIs, or via a
connector client to contact the connector server in the
Agent. Available APIs are SNMP, IIOP protocol adaptor,
and WBEMI[4, 7, 20, 23].

Management
Applications

Manager

Connector

MBean Server

\; MBean Server J f \
Cl.us.te:ed ~—
/ Server MBean pBean
AN o

Java-Based Applications

=
Connector ———__

Java-Based Applications
(Fig. 3) Conceptual structure of cluster.

3. Cluster System: Construction then Configuration

In this section, we will show the architecture to build
up a cluster system and then present a cluster
configuration. We used JMX as a middleware for our
cluster system construction. The manageable object for
JMX is an application program based on the Java
technologies such as EJB (Enterprise Java Beans). Each
application program will be mapped on an MBean, and
each MBean will be registered on the MBean server that
resides on the same Java virtual machine where the
application program is under execution. In addition, the
Monitor of this MBean server (one of the Agent
Services) manages the applications with their status
information. The Manager system can recognize and
resolve any erroneous situation by the reception of an
event from Monitor whenever Monitor senses an
exceptional situation such as the halt of an MBean or
overloading of an MBean, etc. For this purpose, Agent
should be able to communicate with the Manager system.
The communication can be made by APIs for SNMP[19,
20]. Alternatively, the connector server on Agent and the
connector client on the Manager system can build
communication between Agent and the Manager system.

374 BEMeIEl=2X A M14-AT [6=(2007.12)

For the actual system implementation, the second
communication scheme was used.

(Figure 2) shows the inside of the server, which is
based on EJB and managed by JMX. (Figure 3) shows
the overall structure of the cluster system in the simplest
configuration. There is one Manager in the system, which
manages the whole cluster system. This simple structure
can be used to configure the cluster system without any
performance degradation. However, the SPoF (Single
Point of Failure) problem can occur whenever the
Manager system becomes faulty, which is an example of
a fatal situation with very low availability[11]. However,
our approach allows advanced configuration of a cluster
system as the following subsection shows.

(A) {B) (€)

(D)

(E)

8 : Agent (Clustered Server)

[

(Fig. 4) Alternative configuration of cluster.

3.1 Dynamic Configuration of the Cluster

In (figure 4), five other configurations are suggested
for dynamic clustering. Each configuration has its own
cons and pros, which are trade-offs between the
availability and resources usage efficiency.

(A) is the basic architecture model discussed in (figure
3), bearing the possibility of SPoF problem. (B), (C), and
(D) are alternative architectural models to solve the
possible SPoF problem. Because the manager of a
conventional cluster system is only a load balancer, the
extension to the multiple manager scheme such as (B),
(C) and (D) has been rarely discussed[6, 8, 12]. On the
other hand, our approach is ready for the extension to
(B), (C) and (D), and a multiple manager scheme can be
a solution to the SPoF problem. Several Manager systems
are employed to guarantee the basic fault tolerance in
case of the failure of a Manager system. However, these
models have the problems such as the redundancy of
management information and the high communication
overhead between servers and Managers, which may

cause the resource extravagance. (E) shows a hierarchical
model with a topmost Manager system that manages
each sub—Manager system. This model is much more
scalable than the other models, but the extra hierarchy
additional
resources. In addition, the sub-Manager system must be

requires computing and communication
extended in a way that the nodes with the sub-Manager

can bear both Manager and the top level of Agent.

Serverinfo MBeanServerinfo MBeaninfo
AgentiD AgentlD MBeanServerName
IP Address MBeanServerName MBeanName
IsAlive | ServiceCnt ServiceCnt
avgServiceTime avgServiceTime
Capacity Capacity
MBeanType

(Fig. 5.) Structure of management of objects.

Manager ID | AgentID | Message T Event T MBean Name | Variable Binding List
g g ge Type ype g

[variabtet | valuet | variablez | valuez

(Fig. 6) Message format

3.2 Managed Objects
Manager manages three sorts of objects: ServerInfo,
MBeanServerInfo, and MBeanInfo. ServerInfo has the

Agent

MBeanServerInfo has the information of the MBean

information of a node where resides.
server created by the Agent. MBeanInfo stands for the
management information of each MBean registered on the
MBean server. (Figure 5) shows the structure of the
Manageable object and attributes of each object. We omit
detailed explanation about the attributes since attributes

of each object are self descriptive.

3.3 Message Formats and Types

(Figure 6) shows the message format for the
communication between Manager and Agents defined for
cluster management in this paper. <Table I> shows the
descriptions of each message format and the six message
types defined in this paper.

34 Cluster System Implementation

The actual cluster system suggested in this paper was
implemented and tested. The configuration is basically
similar to (figure 4-(A)). The implemented testbed is
composed of normal computers (i.e., without Manager) and
computers with Manager. Each node has heterogeneous

MEIA RGAel 2280 S{AH M 725 2 22 375

(Table 1> Message format and type descriptions

Message Format Descriptions

Message Type Descriptions

ManagerID The identifier of Manager for communication.

MBean Information |Manager’s request of MBean information
Request managed by Agent.

AgentID The identifier of Agent for communication.

MBean Information |Agent’s reply of MBean information requested
Transfer by Manager.

Message type is one of the followings.
(1) MBean information request

(2) MBean information transfer

(3) Event notification

Message Type
(with six sub-

Transfer of an event from a MBean or the

Event Notificati
vent Notthcation MBean Server to Manager.

fields) (4) MBean server status information
(5) MBean server status information transfer
(6) IsAlive
. Event type is one of the followings.
EventType . . .
(thrown by a (1) MBean Capacity Full MBean Server Manager’s request of the status of a MBean

(2) MBean Server Capacity Full
(3) MBean Capacity Free
(4) MBean Server Capacity Free

MBean or the
MBean server)

Status Information

server to Agent.
Request

MB S
ean Server Agent’s transfer the MBean server status

MBean Name The record of MBeanName. Status Information |, .
N information.
Transfer
Variable Binding Contains the MBean or MBean server information. | |IsAlive Manager’s check the living status of nodes.

List

processors and operating systems (e.g., Windows 2000
Server, Windows 2000 Professional, and Linux). The
connector client for the

Manager server has a

communication with Agent. The detailed component
diagram is shown in (figure 7).

The Manager server obtains management information
and notifies it to the management application. Finally the
administrator acquires the overall status of the cluster
system. Each normal node executes its user applications.
Each application is mapped on an MBean and registered
on the MBean server. For the implementation for this
paper, each node has one MBean server to manage
MBeans. The MBean server registers MBeans and Agent

services that manage application programs. Among
Agent Side Manager Side
_ Load Message
Message Balancer Analyzer
Analyzer
. n]]
MBean- é E E
5| 3] .
=1 = -1 JMX-enabled
& h 2 Management
MBean- g 3 i Application
]]
Muonitor |
Java Virtual Java Virtual MIB

(Fig. 7) Implementation details.

various Agent services, Monitor plays the key role to
sense erroneous situations and to throw events for the
notification of errors. Whenever each application starts a
new service for a client, a new MBean will be created
and registered to the MBean server. Monitor checks the
number of MBeans on the server or other related
MBeans, and
whole

information specific to throws an

situation-related event so that the system

recognizes the error occurrence.

4. Cluster Management

With the JMX based cluster system technologies, a
cluster system can cope with various situations requiring
management as fluent as possible. The most
representative situations have been researched and can be
distinguished. We will see the management solution for
each case one by one. With the support of JMX, it is
very easy to complete these solutions.

We choose the polling scheme from Manager to nodes
intentionally since we can alleviate the extra load of
management to a node. An interrupt scheme from a node
to Manager can burden computational nodes since an
interrupt is a kind of an active mechanism to the node.
Therefore we choose a passive mechanism of polling
from the view of a node. We can also control the period
of polling by simply trimming the polling timer on one

Manager instead of the individual interrupt timers on

376 ZEMeIEl=2X A M14-AT [6=(2007.12)

multiple nodes. This simplified scheme works very well
in our experiments and can strengthen a node’s
serviceability.

-New server addition: a new server can be added
anytime.

-Server removal: any server can be removed.

-Server overload management: the server overloaded
by the concentration of related requests must be
managed.

-Server failure management: the faulty server must be

removed.

4.1 Addition of a new node : (Figure 8)

Servers can be added anytime to cope with the
concentrated user requests. Manager does a major role
for the addition mechanism in cooperation with Load
Balancer.

(1) Manager: checks the aliveness of its nodes and
their management record by sending IsAlive
message. A new node must reply.

2

N

Manager: finds a new node starting, assigns a new
ID to the Agent of the node, and sends a message
requesting the information of MBeans and the
MBean server on the server.

(3) Manager: records the information received from the
server, modifies the management information on
MIB of the node, and notifies the addition of the
new node to Load Balancer.

(4) Load Balancer: starts sending jobs to the added
node.
4 A ﬂ\ 44
/ \ /
\‘ﬁ ,
S Y.
I
<1> <2> <35>
check the found a request info
new node new node of a new node
Load Balancer “4—
\ P
. - Yy . 14
<4> <5>

store the info
notify to load balancer

manager recognizes
the node info

(Fig. 8) Addition of a new node

4.2 Removal of an existing node : (Figure 9)

Any node can be removed anytime for the management
purpose by server administrator. Manager does a main
role.

Load Balancer

N

<1> <2>
notify to load balancer request the node info until
of a node removed no service assigned

7 - 7

o T
P MiB A h

¥ 1] . ¥

[i R S —)

\ _
==
_ |

<3> <4>
modify manager info node removed

(Fig. 9) Removal of an existing node

(1) Administrator: sends the information of a
to-be-deleted node to Manager.

(2) Manager: notifies Load Balancer that the node is
out of service - no more jobs can be assigned.

(3) Manager: requests the information of MBeans to
the node to check if the node has jobs on
processing.

(4) The requests of the MBean information are
repeated until there are no jobs on the node.

(5) Manager: updates the management information of
the node.

(6) The node can be physically deleted.

43 Management of an overloaded node (load balancing) :
(Figure 10)

An overloaded server must be handled in order to

maximize the overall server performance. Otherwise, an

overloaded node will be a critical bottleneck for the

server system and maybe a faulty one in final.

1 Load Balancer
4
) v . .
B MIB
S . E— =5 L]
MBean Serve l"_“"‘_":_'
m::ﬂ:or <2>
recognize m manager info update
a problem notify to load balancer
Load Balancer 4~
Ak \ 1
I A MIB P T

<3> <d>
node info notify load balancer
recognize restart

(Fig. 10) Handle of an overloaded node

(1) Situation: FEither the
MBeanServer

MBean
capacity on a node exceeds its

capacity or the

predefined capacity.
(2) Monitor:

notifies to Manager through an event.

recognizes an overloading situation and

(3) Manager: informs Load Balancer that the node
cannot receive any more service request.

(4) Manager: requests ServiceCnt information to check if
other nodes can process more jobs. Each node has
its own avgServiceTime, and must check if it can
reduce the avgServiceTime. Nodes having ServiceCnt
less than their capacity can process additional
requests.

(5) Manager: notifies Load Balancer that these nodes are

available to serve additional requests.

44 Management of a node failure : (Figure 11)
A failed node must be removed and/or replaced to
keep the overall server performance.

(1) Monitor: checks the aliveness of nodes by sending

an IsAlive message periodically, and reports to

Manager.

(2) Manager: notifies Load Balancer that a node is
halted.

(3) Load Balancer: stops the assignment of new jobs
to the node.

(4) Manager: notifies Administrator.
(5) Administrator: removes the node from the cluster.

[~ Load Balancer

L /R

. -

(2ot

<1> <2>
found a dead node manager info update notify to load
balancer of a problematic node

- 7

/1 SN

= s
L_ 1 L

<3> <4>
removed restart the node
the node repair

(Fig. 11) Handle of a node failure.

5. Availability Verification

How the system responds for the construction and
management of a cluster system will be eventually

MEIA RGAel 2280 S{AH Mi 725 2 22 377

reflected in the load balancing performance. Availability
can be achieved by the efficiency of load balancing in our
cluster server. Load balancer of Manager in (figure 7)
does basic load balancing based on
which
management objects. A new request will be assigned by
node with the smallest
MBeanServerInfo.ServiceCnt. We call it a
Service-Oriented (SO)

sacrifice resources in order to collect the current status of

MBeanServerInfo.ServiceCnt is an attribute of

the load balancer to a

scheduling since it does not
clustered nodes. Instead, every possible system resource
is designed to devote to the service for user requests.

We designed various situations to check the availability
of the overall We will three

representative results in the following subsections. The

server cluster. show
graph of time versus the accumulated number of allotted
jobs shows the load balancing results. In case a node is
removed or down, the accumulated number for the node
is set to zero to indicate the operation of the node
stopped. These experiments are designed for each node
alloted and
situations with the duration of less than an hour. In order

with tens of jobs suppose overloaded

to verify the availability and load balancing (containing
scheduling)
experiments for each category. We believe that this

respectively, we designed primitive
approach can verify the performance of our cluster
system in each performance category.

Other scheduling
schemes incorporated with our cluster server will be

discussed and the results will be demonstrated in Section 6.

complicated load balancing and

5.1 Case |
(Figure 12) shows the experimental results for the most
common case. A new node 6 was added at minute 3, and

50

45 4

-0
""f)a—nﬁll
40 ;
) /}ﬁ‘ﬂ
30 :
20

e
. %< node 2
i A
10

—s— node 4
--=--node 5
--e--node 6

number of services accumulated

1 4 7 0 13 18 19 22 25 28 AN
time(min)

(Fig. 12) one node added and one node removed

378 EMeIE=2X A M14-AT [6=(2007.12)

jobs started to be assigned to the node between minutes
4 and 5. At minute 9, node 5 was ordered to be removed,
and instantly no new jobs were allotted to the node, and
all the remaining jobs in the node were serviced, and the
node was eventually removed between minutes 12 and 13.
We need to look at what happened to the other nodes.
Especially for node 3, its application or MBean node
processing power was exceeded between minutes 8 and
12, and also frequently exceeded after minute 22, resulting
in no request allotment for the node. We also need to
note minutes 4 to 7. The job allotments to a new node
it had less requests being
processed. Contrarily, the allotments to the other nodes
slowed down.

became busy because

52 Case Il

(Figure 13) is for the case of two nodes added and
one node removed. In addition, the processing capacities
of the applications and MBean nodes of each node were
set to a small number. It can be done by setting
MBeanServerInfo.Capacity and MBeanInfo.Capacity and
the number of MBeans on a node to small numbers. In
other words, the overall server capacity was intentionally
set to low in order to simulate the overload situation.

Two nodes were added between minutes 3 and 5. For
the next 3 minutes, those two nodes started to be allotted
but almost no jobs were allotted to the other nodes. At
minute 10, node 7 was ordered to be removed, and no
new jobs were allotted to it. After it was completely
removed at minute 13, new job allotments to each node
were delayed for 2 or 3 minutes because of limited node
capacities and a small number of active nodes.

30

25

20

15

10

number of services accumulated

1 4 7 10 13 16
time{min)

(Fig. 13) Two nodes added and one node removed

5.3 Case Il

(Figure 14) shows the results for a more special
condition. Three nodes got down, and recovered and
added back to the cluster. Additionally two nodes were
added at minutes 3 and 17, respectively, and they two
started to be allotted 2 or 3 minutes later, limiting the
allotments to the other nodes for the time being. Three
nodes got down at minutes 9, 11, and 14, and added back
to the cluster at minutes 10, 12, and 15, respectively. As
a node got down, this figure clearly shows that more
jobs were allotted to the other nodes. As a node was
newly added or added back, the job allotments to the
other nodes were shown to be smoothened.

30

—+— node 1

(o)
o

—#— node 3
—&— node 4
--=-—node 5
=-e-=node 6
- -+ -node 7

20

number of services accumulated
-
o

...... T

1 4 7 10 13 16 19 22
time(min)

(Fig. 14) Three nodes got down, three nodes recovered, and
two nodes added.

(=) o
b .
4
L x
-
|
3
o=
3
~
=
~
it

6. Load Balancing and Scheduling

Second set of experiments was carried out to prove
that the scheduling of our method works well. The Load
Balancer distributes jobs over cluster system with a
specific scheduling policy. As described in Section 4, the
cluster management and load balancer can handle the load
balancing between nodes with communications to and
from the JMX manager as a part of the cluster
(subsection 4.3). In this
service-oriented (SO) scheduling mechanism was
compared with the Round-Robin(RR) scheduling[16] and
the Least-Connection(LC) scheduling[24].

The brief description of SO scheduling is based on the
descriptions of other scheduling mechanisms. In RR
scheduling, the status of each node is not considered, and

management section, our

jobs are distributed to nodes in turn. In LC scheduling,

for each service request, Load Balancer sends a
notification of new service request to the manager system
that collects the most recent node information from each
node (containing ServiceCnt information), and sends the
Load Balancer.

Accordingly, LC scheduling assigns a job to the node

latest node information back to
with least jobs.

In our SO scheduling, when the manager system
receives a request from Load Balancer, it does not collect
the latest information of nodes. Instead, it just sends its
current, already collected, information of the nodes in
MIB back to Load Balancer. RR scheduling does not
utilize yet the existing information while LC scheduling
requires extra network traffic in order to bring up the
up-to—date status of each node. SO scheduling utilizes
relatively recent and already collected information only,
not sacrificing resources and time to collect the most
recent cluster status. Thus, SO scheduling shows the
asymptotically optimized performance of LC scheduling

MEIA RGAel 2280 S{AH MU 725 2 22 379

but with low scheduling overhead.

In these experiments, the same service requests were
generated for each of the scheduling methods, and the
number of jobs being processed by each node was
checked every three minutes. Service request profiles are
designed to cause load imbalance with relatively big jobs
and a small number of jobs in short duration of service
time.

Figures 15 to 17 show the experimental results for an
extreme situation where specific nodes reach their
processing limits, 10 requests per node in these
experiments. In RR scheduling, as shown in (figure 15),
once some limitation is reached (more than 10 requests
per node at time 4), the numbers of jobs assigned are not
balanced among nodes. On the contrary, in our service
oriented scheduling in (figure 16) and LC scheduling as
shown in (figure 17), right after some node limitation is
reached, it can be confirmed that the numbers of jobs get
almost equally distributed among nodes.

Onade 1

orde 2
Onde 3 [[=
10 HEnaded | P —

mmde 5

number of service requests

1 2 3 4 5(full B(revived) 7

time (3 min)

(Fig. 15) Round-Robin Scheduling

Onode 1
10 HEnodE 2 s o
Onade 3
onode 4

8 H@node 5|---------meeee e rrer i =

number of service requests
>

1 2 k| Afull S(fully Blrewived) T
time (3 min)

Onode 1
10 H@node 2

Onode 3
@node 4
8 Mmnode 5[------- - T - R [N

number of service requests
=

1 2 3 4 Sifull Gi(rul Tireviv 2y 8
time (3 min)

(Fig. 17) Least-Connection Scheduling

12

10

average
(=] =]
\
\

—0— RR

2 e LG
—c— SO

o |
1 2 3 4 5 6 7 8

time (3 min)

(Fig. 16) Service-Oriented Scheduling

(Fig. 18) Average Number of Jobs per Node

380 FEMeIE=2X A M14-AT [6=(2007.12)

Considering that our simple, the service oriented
scheduling method can save most of the information
collection and network traffic time which LC method
must use, our method seems very attractive in terms of
scheduling time and efficiency. We investigated the
average number of allotted jobs per node and the
standard deviation of number of allotted jobs per node.

The average number of allotted requests per node is
depicted in (figure 18). Under the normal load, three load
balancing mechanisms show the similar responses. Under
the overload situation after time 4, SO scheduling reacts
instantaneously to reduce the average node loads, while
RR scheduling remains the same and LC scheduling
shows the delayed reaction. These results show that the
low overhead of SO scheduling mechanism leads in the
prompt load balancing in the overloaded situations.

(Figure 19) shows the standard deviation of number of
allotted requests per node. The standard deviation of
number of allotted jobs per node stands for the measure
of load imbalance. We can verify that RR scheduling does
not concern about load balance while two others
consistently concern about load balancing. The LC
scheduling can minimize the load imbalance under the
normal load but it shows abrupt and prolonged load
Our SO

scheduling successfully manages load imbalance under the

imbalance under the overload situation.
normal load and successfully copes with the overloaded
situations. SO scheduling successfully recognizes and
suppresses the load imbalance instantly and distributes

loads over time to smoothen the overloaded requests.

4
35 | ORR
o LC
m
3 m so
=
o
T 25
§ —
3 2
§ 15 _
=
w
1 I
0l5 —’_r R
0
1 2 3 4 5 6 7 8

time (3 min)

(Fig. 19) Standard Deviation of Number of Jobs per Node

7. Conclusion and Future Works

In this paper we demonstrated the fast construction,
the flexible configuration, and the fluent management of a

cluster system with JMX middleware, which is an
up-to—date Java based resource management framework.

-Fast construction: it takes only two man-month to
construct our cluster server system.

-Flexible configuration: the configuration of a cluster
system is easy and service oriented.

-Fluent management: our system can also dynamically
cope with the various situations of a cluster
management for the high manageability and
availability with very reasonable performance.

For the availability issues, the several scenarios of the
cluster management and application processing were
introduced and the availability of our server system was
tested under each scenario. Since the availability highly
depends on the load balancing mechanism of the cluster,
the load balancing issues have been further studied with
different scheduling mechanisms. It showed our service
oriented load balancing approach was eligible compared to
other complicated mechanisms.

However, the JMX specification still has several
limitations for the cluster system managements. For
example, one Agent cannot have multiple MBean servers.
We hope that the next version of JMX will be improved
so that the much dedicated management can be available
by multiple MBean servers on one Agent for better
clustering environments.

Apart from the suggested cluster system, which is
based on LAN environments, WAN (Wide Area
Network)-based cluster systems can be studied in the
future. The ultimate integration of worldwide networks
will lead to a new topic of the global management. One
of the examples can be the technology that enables Beans
based on the Java technologies, especially the EJB
technology, to be managed in the global environments.
For the global management, the naming of Beans or
servers will be of another issue. We expect Jini will be
one of the possible solutions[22].

References

[1] J. Batheja and M. Parashar, “Adaptive cluster computing
using javaspaces,” IEEE International Conference on Cluster
Computing, pp.323-330, 2001.

[2] E. A. Brewer, “Lessons from giant-scale services,” IEEE
Trans. Internet Computing, Vol.5, No.4(July/Aug.), pp.46-55,
2001.

[3] E. V. Carrera and R. Biancini, “Efficiency vs. portability in
cluster-based network servers,” Proceedings of the 8th
Symposium on Principles and Practice of Parallel
Programming, Snowbird, UT, 2001.

[4] J. D. Case, M. Fedor, M. L. Schoffstall, and C. Davin, “Simple
Network management Protocol ({SNMP}),” Internet RFC
1157, 1990.

[5] G. Chen, C. Wang, and F. Lau, “A scalable cluster-based web
server with cooperative caching support,” Computation and
Currency: Practice and Experience 15, 7-8 (June/July),
pp.681-705, 2003.

[6] B. Elbert and B. Martyna, 'Client/Server Computing,” Artech
House, 1994.

[7]1 J. A. Farrell and H. Kreger, “Web services management
approaches,” IBM Systems Journal, Vol.41, No.2, 2002.

[8] S. Goddard and T. Schoeder, “The sasha architecture for
network-clustered web servers,” High Assurance Systems
Engineering, 2001.

[9] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler,
“Scalable, distributed data structures for internet service
construction,” Proceedings of the 4th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI2000), 2000.

[10] K. A. Hawick and H. A. James, “Dynamic cluster
configuration and management using javaspaces,” IEEE
International Conference on Cluster Computing. pp.145-148,
2001.

[11] S. Horman, “Creating linux web farms (linux high availability
and scalability),” Tech. Rep.,
http://www/vergenet.net/linux/has/, Nov. 2000.

[12] D. Ingram, S. Shrivastava, and F. Panzieri, “Constructing
dependable web services,” IEEE Trans. Internet Computing,
Vol4, No.1(Jan./Feb.), pp.25-33, 2000.

[13] H. Kim, H. Y. Song, and K. C. Lee, “Dynamic configuration
and management of clustered system with JMX,” Lecture
Notes in Computer Science 2662, pp.858-867, 2003.

[14] H. Kreger, “Java management extensions for application
management,” IBM Systems Journal, Vol.40, Vol.1, 2001.

[15] D. S. Linthicum, “CORBA 2.0?,” Open Computing, Vol.12,
No.2(Feb.), 68-, 1995.

[16] J. B. Nagle, “On packet switches with infinite storage,” IEEE
Trans. Communications, Vol.35, No.4(Apr.), pp.435-438,
1987.

MEIA RgHel 2280 SAH MK 725 2 2e| 381

[17]1 V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum, “Locality-aware request
distribution in cluster-based network servers,” Proceedings
of the 8th ACM Conference on Architectural Support for
Programming Languages and Operating Systems. San Jose,
CA, pp.205-216, 1998.

[18] Y. Saito, B. N. Bershad, and H. M. Levy,, “Manageability,
availability and performance in porcupine : A highly scalable
internet mail service,” Proceedings of the 17th ACM
Symposium on Operating Systems Principles, Charlston, SC,
1999.

[19] W. Stalling, 'SNMP, SNMP v2, and CMIP,” Addison Wesley,
1993.

[20] Sun-Microsystems, 'Java management extensions SNMP
manager APIs,” 1999a.

[21] Sun-Microsystems, 'JMX white paper,” 1999b.

[22] Sun-Microsystems, 'Jini architecture specification,” Vol.1,
No.2, 2001

[23] Sun-Microsystems, 'Java management extensions
specifications,” Vol.1, No.4, 2003.

[24] W. Zhang, “Linux virtual server for scalable network

services,” Ottawa Linux Symposium, 2000.

M 5 A
- e-mail : winkatu@empal.com

2001) B HEF D
20034 Fovh AFHEFHAAD

S o ®

e-mail : hayoon@wow.hongik.ac.kr

1991 A& et Al4kg Al g2 (SHAL

1993 Agoistal A4kt (4 A}

2001 University of California - Los
Angeles Computer Science
Department (A}

20019 ~AA St A g Faug

B Rk B2

2

A A" 1% JEYH

382 FEMeIE=2X A M14-AT [6=(2007.12)

o 71 &
e-mail : kleel @hongik.ac kr
1977d A& digtal A28k (3HAL
1979 gh=3tskel Akt (A A}
19871 University of Wisconsin—-Madison

A7) @ e F eI

FARN =1 o
e-mail : hkim@ximeta.com
1981 A& gt 7] A& 8tk (3HAH
1934 A& gt 7)1 AlE 8t a (A AL
1994'd University of California-
Berkeley #%FstaH(2kAL)

19949 ~ @A Folsha 7157 F ot} 1989 ~ & A Folsha 2157 F o}
g A
Aok =N A, $At A 2H walEok A E, AagERagy 5

