DOI QR코드

DOI QR Code

The Second-order Scattering of the Interaction of Pd Nanoparticles with Protein and Its Analytical Application

  • Guo, Xiaoyan (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities) ;
  • He, Baolin (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities) ;
  • Sun, Chuntao (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities) ;
  • Zhao, Yanxi (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities) ;
  • Huang, Tao (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities) ;
  • Liew, Kongyong (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities) ;
  • Liu, Hanfan (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
  • Published : 2007.10.20

Abstract

The second-order scattering (SOS) phenomenon of the interaction of Pd nanoparticles with protein was reported and a simple, sensitive, palladium nanoparticle-based assay for trace amount of protein with SOS technique was developed. The SOS intensities were significantly enhanced due to the interaction of Pd nanoparticles with bovine serum albumin (BSA) or human serum albumin (HSA) at pH 3.5 or 4.0, respectively. The maximum SOS peak appeared at 260/520 nm (λex/λem). The optimal experiment conditions, affecting factors and the influence of some coexisting substances were checked. The SOS intensity increased proportionally with the increase of Pd concentration below 3.0 × 10?5 mol·L?1, while declined gradually above 4.0 × 10?5 mol·L?1. BSA within the range of 0.01-2.6 μg·mL?1 and HSA of 0.01-1.7 μg·mL?1 can be detected with this method and the detection limits were 2.3 and 11.2 ng·mL?1, respectively. The method was successfully applied to the quantitative detection of total protein content in human serum samples with the maximum relative standard deviation (RSD) lower than 2.6% and the recoveries over the range of 99.5-100.5%.

Keywords

References

  1. Pasternack, R. F.; Bustamante, C.; Collings, P. J.; Giannetteo, A.; Gibbs, E. J. J. Am. Chem. Soc. 1993, 115, 5393 https://doi.org/10.1021/ja00066a006
  2. Pasternack, R. F.; Collings, P. J. Science 1995, 269, 935 https://doi.org/10.1126/science.7638615
  3. Huang, C. Z.; Zhu, J. X.; Li, K. A.; Tong, S. Y. Anal. Sci. 1996, 13, 263
  4. Huang, C. Z.; Li, K. A.; Tong, S. Y. Anal. Chem. 1996, 68, 2259 https://doi.org/10.1021/ac9511105
  5. Chen, G. Z.; Huang, X. Z.; Zheng, Z. Z.; Xu, J. G.; Wang, Z. B. Fluorescence Analysis Method; Science Press: Beijing, PR China, 1990; p 102
  6. Liu, S. P.; Liu, Z. F.; Li, M. Acta Chim. Sin. 1995, 53, 1178
  7. Liu, S. P.; Liu, Z. F. Chem. J. Chin. Univ. 1996, 17, 1213
  8. Liu, S. P.; Yang, R.; Liu, Z. F. J. Anal. Chem. 1998, 26, 1432
  9. Liu, S. P.; Liu, Z. F.; Jiang, Z. L.; Li, M.; Long, X. F. Acta Chim. Sin. 2001, 59, 1864
  10. Liu, S. P.; Liu, Z. F.; Li, M. Chin. J. Anal. Chem. 1996, 24, 665
  11. Li, N. B.; Liu, S. P.; Luo, H. Q. Anal. Chim. Acta 2002, 472, 89 https://doi.org/10.1016/S0003-2670(02)00999-6
  12. Ding, F.; Zhao, H.; Chen, S.; Ouyang, J.; Jin, L. Anal. Chim. Acta 2005, 536, 171 https://doi.org/10.1016/j.aca.2004.12.035
  13. Ding, F.; Zhao, H.; Xia, L.; Jin, L. Spectrochim. Acta Part A 2005, 62, 377 https://doi.org/10.1016/j.saa.2005.01.004
  14. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265
  15. Bradford, M. M. Anal. Biochem. 1976, 72, 248 https://doi.org/10.1016/0003-2697(76)90527-3
  16. Flores, R. Anal. Biochem. 1978, 88, 605 https://doi.org/10.1016/0003-2697(78)90462-1
  17. Rodkey, R. L. Arch. Biochem. Biophys. 1964, 108, 510 https://doi.org/10.1016/0003-9861(64)90435-7
  18. Sharron, G. P.; Liiu, H.; Michael, J. N. Curr. Opinion Chem. Biol. 2003, 7, 609 https://doi.org/10.1016/j.cbpa.2003.08.013
  19. Capitan-Vallvey, L. F.; Duque, O.; Miron, G. G.; Checa, M. R. Anal. Chim. Acta 2001, 433, 155
  20. Zhou, Y. Y.; Bian, G. R.; Wang, L. Y.; Dong, L.; Wang, L.; Kan, J. Spectrochim. Acta Part A 2005, 61, 1841 https://doi.org/10.1016/j.saa.2004.07.013
  21. Li, B. X.; Zhang, Z. J.; Zhao, L. X. Anal. Chim. Acta 2002, 468, 65 https://doi.org/10.1016/S0003-2670(02)00626-8
  22. Zhu, N. N.; Zhang, A. P.; He, P. G.; Fang, Y. Z. Electroanalysis 2004, 16, 1925 https://doi.org/10.1002/elan.200303028
  23. Wu, L. P.; Li, Y. F.; Huang, C. Z.; Zhang, Q. Anal. Chem. 2006, 78, 5570 https://doi.org/10.1021/ac0603577
  24. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293 https://doi.org/10.1021/cr030698+
  25. Penn, S. G.; He, L.; Natan, M. Curr. Opin. Chem. Biol. 2003, 7, 609 https://doi.org/10.1016/j.cbpa.2003.08.013
  26. Chang, W. B.; Li, K. A. Concise Handbook of Analytical Chemistry; Beijing University Press: Beijing, PR China, 1981; p 264

Cited by

  1. Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles vol.180, pp.9-10, 2013, https://doi.org/10.1007/s00604-013-1000-0
  2. Crystal Structure of Ferrihydrite Nanoparticles Synthesized in Ferritin vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1969