Synthesis of 3-Benzyl- or 3-Benzoyl-7,8-dihydro-6H-chromene Derivatives Starting from Baylis-Hillman Adducts

Seung Chan Kim, Hyun Seung Lee, and Jae Nyoung Kim*
Department of Chemistry and Instinte of Basic Science, Chonnam National University, Gwangit 500-757, Korea
${ }^{+}$E-mail: kimin'tichonnam.ac: kr Received Octoher 9, 2006

Key Words: Chromene, Baylis-Hillman adducts, β-Diketone, PCC

Recently, chemical transformations using the BaylisHillman adducts have been extensively investigated by us and other groups. ${ }^{1}$ Among them, the reaction of BaylisHillman acetates and β-diketones or β-keto esters provided a variety of interesting compounds including alkylidene cyclohexenones, ${ }^{2}$-hydroxyacetophenones, ${ }^{3}$ 3,4-dihydro$2 I I$-pyrans, ${ }^{4} \quad 3$-alkylidenebicyclo $[3.2 .1]$ octan- 8 -ones, ${ }^{5} \quad 4$ -arylidenecyclohexane-1,3-diones, ${ }^{6}$ and 4 -methylene-2-cyclohexenones. ${ }^{7}$ Recently, 3-benzyl-2-hydroxy-7.8-dihydro-6/I-quinolin- 5 -ones were synthesized from the reaction of Baylis-Hillman acetate and cyclic enaminone. ${ }^{8}$
Various kinds of α-pyrones and chromene derivatives show interesting biological activities ${ }^{9.10}$ and much synthetic effort has been devoted to the synthesis of them. ${ }^{9.10}$ We reasoned that we could prepare the chromene skeleton by using the Baylis-Hillman adduct and cyclic β-diketone as depicted in Scheme 1. The reaction of the Baylis-Hillman
acetate 1 and cyclohexane-1,3-dione (2a) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{5}$ in DMF gave 3 a in 68% yield. Conversion of 3 a into the corresponding lactone derivative $4 a$ was conducted by refluxing 3 a in p-xylene to give 4 a in 59% yield. The exodouble bond of 4 a could be isomerized in its endo-position by treatment with DMAP (4,4-dimethylaminopyridine) in refluxing p-xylene to give 5 a in 89% yield. As easily expected, the reaction of $\mathbf{3 a}$ in the presence of DMAP in refluxing p-xylene gave $\mathbf{5 a}$ in 75% yield directly, In addition, compound 5 a was synthesized directly from the reaction of 1 and $2 \mathbf{a}$ in 78% yield without separation of the intermediate 3a as also shown in Scheme 1.

As a next trial, we examined the allylic oxidation of $4 \mathbf{a}$ and 5a, and we found that the reaction of $4 a$ and PCC (pyridinium chlorochlomate) produced the 3-benzoyl derivative $6 a$ in 63% yield. ${ }^{11}$ However, the oxidation of $5 a$ with PCC showed no reaction. like this we found efficient syn-

Scheme 1

Table 1. Synthesis of 5a-d from I and 2a-d ${ }^{\text {a }}$
Entry

Conditions: (i) $\mathrm{K}_{2} \mathrm{CO}$: (I .1 equiv). [MF, rt. 1 h . (ii) extractive workup. (iii) DMAP' (equiv) p-xylene. reflux, 2 h

Table 2. Synthcsis of 6a-d from I and 2a-d

'Conditions: (i) K (CO. (1.1 equiv). D.MF, rt. I h. (ii) extractive workup. (iii) p-xylene, rellux, I4 h. "Conditions: P'C((2.2 equiv). CHCCly, rt, 24 h. "Compound 5 d was formed together (15%)
thetic methods of both 3-benzyl-7,8-dihydro-6 H -chromene (5a) and 3-benzoyl-7,8-dihydro-6H-chromene (6a).
In order to check the generality of the reaction we used different types of active methylene compounds $\mathbf{2 b - d}$ and obtained similar results as summarized in Table 1 and 2. As shown in Table 1, the use of dimedone ($\mathbf{2 b}$), 5 -methylcyclo-hexane-1,3-dione (2c), and 5-phenylcyclohexane-1.3-dione (2d) gave the corresponding 3-benzylchromene derivatives

5b-d in moderate yields (64-81\%) by following the same procedures of Scheme 1. In the same contexts, the corresponding 3-benzoylchromene derivatives 6b-d were obtained in 31-73\% yields analogously by PCC oxidation of $\mathbf{4 b - d}$.
In summary, we disclosed the synthesis of 3-benzyl-7,8-dihydro- 6 H -chromene and 3-benzoyl-7,8-dihydro-6 H -chromene derivatives starting from Baylis-Hillman adducts in a practically simple process. The studies on the biological activities of prepared compounds are currently underway.

Experimental Section

Typical procedure for the synthesis of compound 4a: lo a stirred solution of the Baylis-Hillman acetate 1 (468 $\mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathbf{2 a}$ (224 mg .2 .0 mmol) in DMF (3 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($304 \mathrm{mg}, 2.2 \mathrm{mmol}$) and strirred at room temperature for 2 h . The reaction mixture was poured into aqueous HCl solution and extracted with ether. After drying with MgSO_{4}, removal of solvent, and column chromatographic purification process (hexanes/EtOAc, $3: 1$) gave pure 3a, $389 \mathrm{mg}(68 \%)$. The compound 3 a ($286 \mathrm{mg}, 1.0$ mmol) in p-xylene was heated to reflux for 10 h . After removal of solvent and column chromatographic purification process (hexanes/EtOAc, $5:$ I) we obtained pure $\mathbf{4 a}, 150 \mathrm{mg}$ (59%). Other compounds $\mathbf{4 b}$-d were synthesized analogously and the spectroscopic data of 3a, 4a-d are as follows.

Compound 3a: 68%; white solid, mp 92-94 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1712,1576,1375,1273 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 1.82 (quintet, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ $(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.5 \mathrm{I}(\mathrm{s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.62(\mathrm{~m}$. $5 \mathrm{H}), 7.74(\mathrm{~s}, \mathrm{IH}), 9.76$ (s. 1H).
Compound 4a: 59%; white solid, mp $110-112{ }^{\circ} \mathrm{C}$; IR (KBr) 1741, 1662, 1371, $1165 \mathrm{~cm}^{-1}$; 'H NMR (CDCl:, 300 $\mathrm{MHz}) \delta 2.01$ (quintet, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.38(\mathrm{t} . J=6.6 \mathrm{~Hz}$. $2 \mathrm{H}), 2.49-2.54(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.52(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.46(\mathrm{~m}$. $5 \mathrm{H}), 7.90(\mathrm{t}, j=2.4 \mathrm{~Hz}, \mathrm{lH})$, ${ }^{15} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta$ 20.50, 23.30, 27.24, 36.4I, 111.89, 120.84, 128.79, 130.09. $130.74,134.19,144.37,162.40,165.33,197.24$.
Compound 4b: 50%; white solid, mp $140-142{ }^{\circ} \mathrm{C}$: [R (KBr) $1745,1664,1371.1167 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta \mathrm{l} .12(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.58-3.61(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.54(\mathrm{~m}, 5 \mathrm{H}) .7 .99(\mathrm{t} . J=2.7 \mathrm{~Hz}$, $1 \mathrm{H})$; ${ }^{15} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) $\delta 23.19,28.31$, 32.42. $40.99,50.46,110.67,120.85,128.83,130.12 .130 .78$. 134.25. 144.44, 162.60, 163.57. 197.05.

Compound 4c: 63%; white solid, mp $130-133{ }^{\circ} \mathrm{C}$: IR (KBr) 1743, 1660, 1599, 1379, $1165 \mathrm{~cm}^{-1}$; ' H NMR (CDCl 5 . $300 \mathrm{MHz}) \delta 1.13(\mathrm{~d}, J=6.0 \mathrm{~Hz} .3 \mathrm{H}), 2.09-2.19(\mathrm{~m}, 1 \mathrm{H})$, $2.26-2.40$ (m, 2H), 2.50-2.63 (m. 2H), 3.58 (s. 2H), 7.40$7.53(\mathrm{~m}, 5 \mathrm{H}), 7.98(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}))^{13} \mathrm{C}$ NMR (CDCl 5.75 $\mathrm{MHz}) \delta 20.85,23.30 .28 .38,35.27,44.75,111.46,120.86$. 128.82. 130.11, 130.77, 134.24, 144.41, 162.53, 164.67. 197.12.

Compound 4d: 59\%; viscous oil: IR (KBr) 1743, 1660, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 2.59-2.92$ (m , $4 \mathrm{H}), 3.41-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.56(\mathrm{~m}, 10 \mathrm{H})$, $8.00(\mathrm{t}, \delta=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{5} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$

Notes
$23.37,34.81 .38 .75,43.50 .111 .75,120.64,126.59,127.32$. 128.87. 128.92, 130.21, 130.81. 134.20, 141.82, 144.66. 162.38. 164.38. 196.22.

Typical procedure for the synthesis of 3-benzylchromene derivative 5a: To a stirred solution of the BaylisHillman acetate $\mathbf{1}(234 \mathrm{mg} .1 .0 \mathrm{mmol})$ and $2 \mathrm{a}(112 \mathrm{mg} .1 .0$ mmol) in DMF (2 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($152 \mathrm{mg}, 1.1$ mmol) and strirred at room temperature for 1 h . The reaction mixture was poured into aqueous HCl solution and extracted with ether. After drying with MgSO_{4} and removal of solvent the crude product was dissolved in p-xylene (2 mL). To the reaction mixture DMAP (122 mg . 1.0 mmol) was added and the reaction mixture was heated to reflux for 2 h . After removal of solvent and column clromatographic purification process (hexanes/EtOAc. $3: 1)$ we obtained analytically pure 5a. $191 \mathrm{mg}(78 \%)$. Other compounds $\mathbf{5 b}$-d were synthesized analogously and the spectroscopic data of $\mathbf{5 a - d}$ are as follows.
Compound 5a: 78\%: viscous oil: IR (KBr) 1734. 1680. $1396 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.12$ (quintet, $J=$ $6.6 \mathrm{~Hz} .2 \mathrm{H}) .2 .51(\mathrm{t} . J=6.6 \mathrm{~Hz} .2 \mathrm{H}) .2 .82(\mathrm{t} . J=6.6 \mathrm{~Hz} .2 \mathrm{H})$. $3.76(\mathrm{~s} .2 \mathrm{H}), 7.19-7.34(\mathrm{~m} .5 \mathrm{H}) .7 .54(\mathrm{~s} .1 \mathrm{H}) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.30,27.72 .36 .31,36.48 .114 .62$. 126.81. 127.02, 128.66. 129.03, 135.41, 137.42, 161.11. 172.14. 194.05 .

Compound 5b: 81% : white solid. mp $139-140^{\circ} \mathrm{C}$; IR (KBr) 1736. $1680.1396 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right)$ $\delta 1.05(\mathrm{~s} .6 \mathrm{H}) .2 .30(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s} .2 \mathrm{H}), 3.69(\mathrm{~s} .2 \mathrm{H}) .7 .17-$ 7.19 (m. 3H) , 7.22-7.25 (m, 2H), 7.44 (s. 1H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 28.27,32.65,36.34,41.41,50.45$. 113.59. 126.83. 126.87. 128.68. 129.11. 135.15. 137.38. 161.47. 170.80. 193.98.

Compound 5c: 64% : white solid. mp $103-105^{\circ} \mathrm{C}$; IR (KBr) $1736.1680 .1396 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right)$ $\delta 1.15(\mathrm{~d} . J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=15.9$ and 11.1 Hz . $1 \mathrm{H}) .2 .31-2.41(\mathrm{~m} .1 \mathrm{H}) .2 .50-2.63(\mathrm{~m} .2 \mathrm{H}) .2 .84(\mathrm{dd} . J=$ 18.3 and 4.5 Hz .1 H$) .3 .76(\mathrm{~s} .2 \mathrm{H}) .7 .21-7.34(\mathrm{~m} .5 \mathrm{H}) .7 .52$ (s. 1H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.82,28.21 .35 .65$. 36.33. 44.73. 114.19. 126.83. 126.97. 128.68. 129.07. 135.31. 137.42. 161.24. 171.57. 194.00.

Compound 5d: 81% : white solid. mp $109-110^{\circ} \mathrm{C}$; IR (KBr) $1736.1680 .1396 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right)$ $\delta 2.67-2.87(\mathrm{~m} .2 \mathrm{H}) .3 .05$ (d, $J=8.1 \mathrm{~Hz} .2 \mathrm{H}$). 3.43-3.53 (m. $1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}) .7 .22-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 35.29,36.39,38.54 .43 .62$. $114.36,126.53 .126 .89 .127 .33,127.57 .128 .73,129.04$. 129.09. 135.19. 137.34. 141.21. 161.11. 171.13. 193.19.

Typical procedure for the synthesis of 3-benzoylchromene derivative 6a: To a stirred solution of 4 a (254 mg . 1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added PCC ($431 \mathrm{mg}, 2.2$ mmol) and strirred at room temperature for 24 h . The reaction mixture was filtered through a Celite pad and washed thorouglly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of solvent and column chromatographic purification process (hexanes/EtOAc. 3 1) we obtained analytically pure $6 \mathrm{a} .169 \mathrm{mg}(63 \%)$. Other compounds $6 \mathbf{b}$-d were synthesized analogously and the spectroscopic data of 6a-d are as follows.

Compound 6a: 63% : white solid. mp $102-104{ }^{\circ} \mathrm{C}$; IR (KBr) 1753, 1685. 1562. 1390, $1261 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}{ }_{3}$. 300 MHz) $\delta 2.22$ (quintet, $J=6.6 \mathrm{~Hz} .2 \mathrm{H}$). 2.62 (t,,$J=6.6$ Hz. 2H). 2.95 (t. $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.64(\mathrm{~m}, 1 \mathrm{H}) .7 .79-7.83$ (m. 2H). 8.18 (s. 1H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.01$. 28.34. 36.42. 114.27. 123.83. 128.61, 129.50. 133.78, 135.92. 141.91. 157.37. 176.87. 190.70. 193.03.

Compound 6b: 73% : white solid. mp $149-151^{\circ} \mathrm{C}$; IR (KBr) 1759. 1684. $1564 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right)$ $\delta 1.12(\mathrm{~s} .6 \mathrm{H}), 2.41(\mathrm{~s} .2 \mathrm{H}), 2.73(\mathrm{~s} .2 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.52-7.57(\mathrm{~m} .1 \mathrm{H}) .7 .73-7.76(\mathrm{~m}, 2 \mathrm{H}) .8 .10(\mathrm{~s} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 28.31 .32 .68$. $41.98,50.39$, 113.29. 123.68, 128.63. 129.55. 133.82, 135.91. 141.76. 157.74. 175.65, 190.80. 193.00.

Compound 6c: 48% : white solid. mp $146-147{ }^{\circ} \mathrm{C}$; IR (KBr) 1747. 1684. 1564. 1392. $1263 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}{ }_{3}$. $300 \mathrm{MHz}) \delta 1.21(\mathrm{~d}, J=6.6 \mathrm{~Hz} .3 \mathrm{H}) \cdot 2.30(\mathrm{dd}, J=16.2$ and $11.4 \mathrm{~Hz}, 1 \mathrm{H}) .2 .40-2.52(\mathrm{~m} .1 \mathrm{H}) .2 .62-2.73$ (m. 2H). 2.96 (dd. $J=16.6$ and 4.5 Hz .1 H$) .7 .45-7.50(\mathrm{~m} .2 \mathrm{H}) .7 .58-7.64$ $(\mathrm{m} .1 \mathrm{H}) .7 .79-7.83(\mathrm{~m} .2 \mathrm{H}) .8 .16(\mathrm{~s} .1 \mathrm{H}) \cdot{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$. $75 \mathrm{MHz}) \delta 20.79 .28 .00 .36 .17$. 44.64, 113.85. 123.78. 128.61. 129.52. 133.79. 135.92, 141.81. 157.50. 176.30. 190.73, 192.98.

Compound 6d: 31% : white solid. mp $155-157^{\circ} \mathrm{C}$; IR (KBr) 1759. 1685. 1562. 1392, $1252 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}$. $300 \mathrm{MHz}) \delta 2.82(\mathrm{dd}, J=16.8$ and 12.0 Hz .1 H$), 2.93(\mathrm{dd} . J$ $=16.8$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .18(\mathrm{~d} . J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.64$ $(\mathrm{m} .1 \mathrm{H}) .7 .26-7.51(\mathrm{~m} .7 \mathrm{H}), 7.59-7.65(\mathrm{~m} .1 \mathrm{H}), 7.81-7.83$ (m. 2H). 8.21 (s. 1 H): ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 35.86$, 38.27. 43.60. 114.02. 124.08. 126.53, 127.78. 128.66. 129.18. 129.55. 133.88, 135.89, 140.75. 141.68. 157.39. 175.80, 190.66. 192.26.

References and Notes

1. For the general review articles. see: (a) Basavaiah. D.: Taganmohan. R.: Satyanarayana. T. Chem. Rev. 2003. 103. 811. (b) Lee. K. Y.: Gowrisankar. S.: Kim. T. N. Bull. Korean Chem. Soc. 2005. 26. 1481. (c) Kim1. J. N.: Lee. K. Y. Curr. Org, Chent. 2002.6 .627
2. Chamakh. A.: Amri. H. Terrahedron Lett. 1998. 39.375.
3. Kim. J. N.; Im. Y. J; Kim, J. M. Tetrahedron Lett. 2002. 43, 6597.
4. Kim. J. N.; Kim. J. M.; Lee, K. Y.: Gowrisankar, S. Bull. Korean Chem. Soc. 2004. 25. 1733.
5. Kim. J. N.: Kim. J. M.: Lee. K. Y. Swhetr 2003. 821
6. Im. Y. J.: Lee. C. G.: Kim. H. R.: Kim. J. N. Tetrahedron Lett. 2003. H. 2987.
7. Kim. J. M.: Lee. K. Y; Kim. J. N. Buhl. Kowem Chem. Soc. 2004. 25. 328.
8. Gowrisankar, S.: Na, J. E.: Lee, M. J.: Kim, J. N. Bull. Koman Chen. Soc. 2005. 26.319.
9. For the biological activities of α-pyrones and chromene derivatives, see: (a) Chyu, C.-F:; Chiang, Y.-M.; Lin. H.-C.; Kuo, Y.-H. Tetrahedron Lett. 2004, 45. 641. (b) Afaninkia, K.: Posner, G. H. Tetrahedron Lett. 1992. 33, 7839. (c) Hsung. R. P.: Shen. H. C: Douglas. C. J.: Morgan. C. D.; Degen. S. J.: Yao. L. J. J. Org. Chen. 1999. 6t. 690). (d) Chen1. C.-H.: Liao. C.-C. Org. Leff. 2000. 2. 2049. (e) Schlingmann. G.: Milne. L.: Carter. G. I. Tetrahedron 1998. 5t. 13013. (f) Shi. X.: Leal. W. S.: Liu. Z.: Schrader. E.; Meinwald, J. Tetrahedron Lett. 1995, 36. 71. (g) Gehrt. A.: Erkel. G.: Anke. T.; Sterner, O. Z. Nanoforsch 1997.
$53 c .89$
10. For the synthesis of α-pyrones and chromene derivatives. see: (a) Trummer. I.: Ziegler. E.: Woltbeis. O. S. Swhthesis 1981. 225. (b) Bohme. H.: Gratz. J. G. V. Tetrahedron 1977. 33. 841. (c) Kotretsou. S. I.: Georgiadis. M. P. Org. Prep. Proceed. Int. 2000, 32. 161. (d) Stanovnik. B. J. Heterocvchic (hem. 1999, 36. 1581. (e) Kepe. V.; Polanc. S.; Kocevar. M. Heterocycles 1998, 48, 671. (f) Larock. R. C.: Doty. M. J.: Han. X. J. Org Chem. 1999. 64. 8770. (g) Larock. R. C.: Han. X: Doty. M. J. Tetrohedron Lett. 1998. 39. 5713. (h) Cerezo. S.: Moreno-Manas. M.: Pleixats. R. Tebrahedron 1998. 54, 7813. (i) Yao, T.: Larock. R. C. J. Org. Chem. 2003. 68. 5936. (j) Ma. S.: Yu. S.: Ym. S. J. Org. Chem. 2003, 68, 8996. (k) Zhu. X.-F.: Schaffiner. A.-P.: Li. R. C.: Kwon. O. Org. Lett. 2005. 7. 2977. (1) Bellina. F.: Biagetti. M.: Carpita.
A.: Rossi, R. Tetrahedron 2001. 57, 2857. (m) Bellina. F.; Biagetti, M.: Carpita. A.: Rossi. R. Tetrahedron Lett. 2001. 12. 2859. (n) Ma. S.: Yin1. S.: Li. L.: Tao. F. Org. Letf. 2002. +. 505. (o) Biagetti. M: Bellina. F.: Carpita. A:: Stabile. P.: Rossi. R. Tetrohedron 2002,58,5023
11. For similar PCC oxidation in a allylic system. see: (a) Dauben. W. G.: Lorber. M.: Fullerton. D. S. J. Org Chen. 1969. 34. 3587 . (b) Parish. E. T.: Chitrakom. S.: Wei. T.-Y. Smoh. Commm. 1986. 16. 1371. (c) Parish. E. J.: Wei. T.-Y. Swhi. Conmmm. 1987.17. 1227. (d) Femandes. R. A.: Kumar. P. Terrohedron Letf. 2003. +4. 1275. (e) Cuellar. M. A.: Moreno, L. E.: Preite. M. D. Arkivoc 2003 (x). 169. (f) Page, P. C. B.; McCarthy. T. J. In Comprehensive Organic Synthesis' Trost, B. M; Fleming, I.. Eds.; Pergamon Press: Oxford. 1991: Vol. 7. pp 99-113.
