DOI QR코드

DOI QR Code

Detection of Avidin Based on Rugate-structured Porous Silicon Interferometer

  • Published : 2007.11.20

Abstract

Biosensor based on rugate PSi interferometer for the detection of avidin has been described. Rugate PSi fabricated by applying a computer-generated pseudo-sinusoidal current waveform has been prepared for the application as a label-free biosensor based on porous silicon interferometer. The fabrication, optical characterization, and surface derivatization of a rugate PSi has been described. The method to fabricate biotinderivatized rugate PSi has been investigated. The surface and cross sectional morphology of rugate PSi are obtained with SEM. FT-IR spectroscopy is used to characterize the oxidation and functionalization reaction of rugate PSi sample. Binding of the avidin into the biotin-derivatized rugate PSi induces a change in refractive index. A red-shift of reflectivity by 18 nm in the reflectivity spectrum is observed, when the biotin-modified rugate PSi was exposed to a flow of avidin.

Keywords

References

  1. Uhlir, A. Bell System Tech. J. 1956, 35, 333 https://doi.org/10.1002/j.1538-7305.1956.tb02385.x
  2. Sohn, H.; Letant, S.; Sailor, M. J.; Trogler, W. C. J. Am. Chem. Soc. 2000, 122, 5399 https://doi.org/10.1021/ja0006200
  3. Lin, V. S.; Motesharei, K.; Dancil, K. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840 https://doi.org/10.1126/science.278.5339.840
  4. Simion, M.; Kleps, I.; Neghina, T.; Angelescu, A.; Miu, M.; Bragaru, A.; Danila, M.; Condac, E.; Costache, M.; Savu, L. J. Alloy Compd. 2007, 434, 830 https://doi.org/10.1016/j.jallcom.2006.08.093
  5. Ilyas, S.; Bocking, T.; Kilian, K.; Reece, P. J.; Gooding, J.; Gaus, K.; Gal, M. Opt. Mater. 2007, 29, 619 https://doi.org/10.1016/j.optmat.2005.10.012
  6. Khan, M. A.; Haque, M. S.; Naseem, H. A.; Brown, W. D.; Malshe, A. P. Thin Solid Films 1998, 332, 93 https://doi.org/10.1016/S0040-6090(98)01209-7
  7. Letant, S. E.; Content, S.; Tan, T. T.; Zenhausern, F.; Sailor, M. J. Sensor Actuat. B- Chem. 2000, 69, 193
  8. Smith, R. L.; Collins, S. D. J. Appl. Phys. 1992, 71, R1 https://doi.org/10.1063/1.350839
  9. Searson, P. C. Advances in Electrochemical Sciences and Engineering; VCH; Mannheim, Germany, 1994; p 69
  10. Lee, B. J.; Jang, S.; Sohn, H. Solid State Phenom. 2007, 124-126, 491
  11. Park, J.; Cho, S.; Ko, Y. C.; Sohn, H. J. Korean Phys. Soc. 2007, 50, 695 https://doi.org/10.3938/jkps.50.695
  12. Janshoff, A.; Dancil, K.-P. S.; Steinem, C.; Greiner, D. P.; Lin, V. S.-Y.; Gurtner, C.; Motesharei, K.; Sailor, M. J.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 12108
  13. Lee, B. J.; Kim, S. G.; Sohn, H. Key Eng. Mater. 2006, 321-323, 53
  14. Li, Y. Y.; Cunin, F.; Link, J. T.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J. Science 2003, 199, 11264
  15. Schmedake, T. A.; Cunin, F.; Link, J. R.; Sailor, M. J. Adv. Mater. 2002, 14, 1270 https://doi.org/10.1002/1521-4095(20020916)14:18<1270::AID-ADMA1270>3.0.CO;2-R
  16. Meade, S. O.; Yoon, M. S.; Ahn, K. H.; Sailor, M. J. Adv. Mater. 2004, 16, 2811
  17. Brecht, A.; Gauglitz, G. Sensor. Actuat. B-Chem. 1997, 38, 1
  18. Janata, J.; Josowicz, M.; Devaney, D. M. Anal. Chem. 1994, 66, 207R https://doi.org/10.1021/ac00084a010
  19. Piechler, J.; Brandenburg, A.; Brecht, A.; Wagner, E.; Gauglitz, G. Appl. Opt. 1997, 36, 6554 https://doi.org/10.1364/AO.36.006554
  20. Abel, A. P.; Weller, M. G.; Duveneck, G. L.; Ehart, M.; Widmer, H. M. Anal. Chem. 1996, 68, 2905 https://doi.org/10.1021/ac960071+
  21. Polzius, R.; Diessel, E.; Bier, F. F.; Bilitewski, U. Anal. Biochem. 1997, 248, 269 https://doi.org/10.1006/abio.1997.2105
  22. Homola, J.; Yee, S. S.; Gauglitz, G. Sensor. Actuat. B-Chem. 1999, 54, 3
  23. Nikitin, P. I.; Beloglazov, A. A.; Kochregin, V. E.; Valeiko, M. V.; Ksenevich, T. I. Sensor. Actuat. B-Chem. 1999, 54, 43
  24. Drott, J.; Lindstrom, K.; Rosengren, L.; Laurell, T. J. Micromech. Microeng. 1997, 7, 14 https://doi.org/10.1088/0960-1317/7/1/004
  25. Laurell, T.; Drott, J.; Rosengern, L.; Lindstrom, K. Sensor. Actuat. B-Chem. 1996, 31, 161
  26. Beattie, K. L.; Beattie, W. G.; Mengm, L.; Turner, S. L.; Coral-Vazquez, R.; Sith, D. D.; Mclntyre, P. M.; Dao, D. D. Clin. Chem. 1995, 41, 700
  27. Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840
  28. Sailor, M. J. Properties of Porous Silicon, Datareview Ser. NO. 18; Canham: London; 1997; pp 364-370
  29. Herino, R. Properties of Porous Silicon, Datareview Ser. NO. 18; Canham: London, 1997; pp 89-96
  30. Pugliese, A.; Coda, A.; Malcovati, M.; Bolognesi, M. J. Mol. Biol. 1993, 231, 698 https://doi.org/10.1006/jmbi.1993.1321
  31. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013 https://doi.org/10.1126/science.281.5385.2013
  32. Stuchbury, T.; Shipton, M.; Norris, R.; Malthouse, J. P. G.; Brocklehurst, K.; Herbert, J. A. L.; Suschitzky, H. Biochem. J. 1975, 151, 417

Cited by

  1. Fabrication and optical characterization of a porous silicon distributed Bragg reflector vol.62, pp.1, 2013, https://doi.org/10.3938/jkps.62.132
  2. α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery vol.9, pp.22, 2017, https://doi.org/10.1021/acsami.7b04066
  3. Photoluminescence-Based Sensing With Porous Silicon Films, Microparticles, and Nanoparticles vol.19, pp.20, 2009, https://doi.org/10.1002/adfm.200900535
  4. Simply Modified Biosensor for the Detection of Human IgG Based on Protein AModified Porous Silicon Interferometer vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1593
  5. Glutathione-sensitive and folate-targeted nanoparticles loaded with paclitaxel to enhance oral squamous cell carcinoma therapy vol.8, pp.15, 2020, https://doi.org/10.1039/c9tb02818h