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Accumulation of excess senile plaques (^-amyloid, A0- 
plaques) in the brain is strongly associated with the patho
genesis of Alzheimer’s disease (AD).1 While there are no 
definitive treatments available to affect a cure of AD, much 
recent interest has been given to the development of anti
amyloid therapies aimed at halting and reversing A0-deposi- 
tion and, thus, monitoring of the therapeutic efficacy would 
greatly benefit from methods for the in vivo detection and 
quantification of A0-deposits in the brain.2

Several groups have reported a series of potential imaging 
agents for the in vivo imaging of A0-plaques with positron 
emission tomography (PET) or single-photon emission com
puted tomography (SPECT). However, to our knowledge, no 
three dimensional structure activity relationship (3D-QSAR) 
studies on PET ligands have been published so far with the 
exception of CoMFA/CoMSIA study on serotonin trans
porter (SERT) ligands,3 and the aim of the present study was 

to quantitatively investigate structure-activity relationships 
(SAR) of PET ligands with regard to the future development 
of potential new PET radiotracers by using Comparative 
Molecular Field Analysis (CoMFA) and Comparative Mole
cular Similarity Indices Analysis (CoMSIA).

In this study, we constructed a 3D-QSAR model with 
several PET ligands such as ThioT analogues and stilbene 
derivatives, which could be applied to predict binding 
affinity of the structurally related compounds against A0- 
plaques. From the literature, binding affinity data of 62 
ThioT derivatives4,5 and 11 stilbene derivatives6 were 
obtained which were used for model building (Fig. 1). At 
first, the 73 compounds obtained from the literature were 
divided into two groups: 63 compounds as training set and 
the other 10 compounds as test set. The training set was used 
to build 3D-QSAR models with CoMFA and CoMSIA 
methods, while the test set was used to validate the 3D-
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Figure 1. ThioT and stilbene derivatives used for 3D-QSAR study. Fragments used for structural alignment are represented in bold lines.
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Figure 2. Structural alignment of ThioT and stilbene derivatives around the common substructure PhCH=CH.

Table 1. PLS analysis on PET ligands

Model
Cross-Validated Non-cross-validated Fraction %

q2 SEP N r SEE F Sd Ed Hd Dd A
CoMFA 0.631 0.520 5 0.926 0.234 148.45 0.347 0.653 — — —

CoMSIAsea 0.525 0.589 4 0.839 0.343 78.024 0.181 0.819 — — —
CoMSIAdab 0.508 0.600 4 0.876 0.304 83.236 0.730 0.270 — — —
CoMSIAallc 0.654 0.503 4 0.900 0.270 135.69 0.204 0.051 0.259 0.149 0.337

/-leave one out (LOO) cross-validated correlation coefficient, SEP-standard error of prediction, N-optimum number of components, r2-non-cross-
validated correlation coefficient, SEE-standard error of estimate, F-F-test value, as = steric field, e = electrostatic field. bd = hydrogen bond donor, 
hydrogen bond acceptor. call = steric + electrostatic + hydrogen bond donor + hydrogen bond acceptor + hydrophobic. dS = steric, E = electrostatic,

a =

hydrophobic, D = hydrogen bond donor, A = hydrogen bond acceptor

QSAR model. Finally, the contour plots of CoMFA and 
CoMSIA were analyzed to provide helpful information on 
how to improve the binding affinity of ThioT derivatives by 
structural modifications.

All calculations were carried out on a linux enterprise 
operating system using molecular modeling software pack
age SYBYL v 7.2. All compounds were constructed by the 
Sketch module in SYBYL base and assigned with MMFF94s 
charges. For more flexible compounds, systematic searches 
were performed with an interval of 10o on every rotatable 
bond to ensure their lowest energy conformations. Finally, 
they were minimized with MMFF94s force field. The most 
crucial step in performing 3D-QSAR is to determine the 
bioactive conformations of the compounds so that all 
compounds could be aligned together. In this study, the 
styrene moiety [PhC=X (X = C or N)] commonly found in 
the ThioT and stilbene derivatives was used as the sub
structure for alignment. The compound PIB (54) was used as 
a template for structural alignment from the alignment 
facility in SYBYL, and 63 training set molecules and 10 test 
set molecules were all aligned together (Fig. 2).

With the structure-based ligand alignment in hand, we 
attempted 3D-QSAR study by using CoMFA7,8 as well as 
CoMSlA9,10 method with grid spacing of 2.0 A. As usual, 
PLS (partial least squares) method was used to establish and 
validate 3D-QSAR. The Ki values were converted into pKi 

(-logKi) to describe the binding affinities. CoMFA was set at 
standard values, with a sp3 carbon atom with one positive 
charge used to probe steric and electrostatic fields. The 
standard cutoff value was set to 30 kcal/mol. LOO (leave- 
one-out) cross-validation method was used to evaluate the 
initial model. The cross-validated coefficient q2 was calcu

lated, the optimum number of components was then given, 
and CoMFA model was finally derived corresponding to the 
optimum number. The column filtering box was kept 
unchecked during all operations (Table 1).

The basic principle of CoMSIA is the same as that of 
CoMFA, but CoMSIA includes some additional descriptors 
such as hydrophobicity, hydrogen bond donor and hydrogen 
bond acceptor. As in the CoMFA model, the same regression 
analysis was used for CoMSIA field energies, and the results 
obtained from the PLS analysis are also summarized in 
Table 1.

The CoMFA model with 63 molecules in the training set is 
consequently a clearly statistically significant model show
ing a cross-validated q2-value of 0.631 at 5 components 
(Table 1). This analysis was used for the final non-cross- 
validated run, giving a good correlation coefficient (r2 value 
of 0.926) (Table 1). Using steric, electrostatic, hydrophobic, 
and hydrogen bond donor and acceptor properties as 
descriptors, CoMSIA analysis was performed and the results 
are also listed in Table 1. The best q2 was found using all five 
different descriptor variables, which demonstrates that these 
variables are necessary to describe the interaction mode of 
the PET ligands with A^-plaques. The CoMSIA model with 
a cross-validated q2 of 0.654 for 4 components and a 
conventional r2 of 0.900 was obtained (Table 1). These data 
demonstrate that the CoMSIA model is stable and statisti
cally significant and it should be noted that, due to the use of 
less components than CoMFA model, the CoMSIA model 
has reduced risk of overtraining the system. The correspond
ing field distributions of these five descriptor variables were 
20.4, 5.1, 25.9, 14.9, and 33.7%, respectively, which indi
cates that steric rather than electrostatic and H-bond acceptor
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Table 2. Predicted binding affinities (PBA) versus experimental binding affinities (EBA, pKi) and residuals (d) by CoMFA and CoMSIA

EBA
CoMFA CoMSIA

EBA
CoMFA CoMSIA

EBA
CoMFA CoMSIA

PBA d PBA d PBA d PBA d PBA d PBA d
1 7.82 7.63 0.19 7.28 0.54 26 9.17 8.94 0.23 9.06 0.12 51 8.31 8.57 -0.26 8.19 0.12
2 7.57 7.19 0.38 7.33 0.24 27 9.19 9.15 0.04 9.11 0.08 52 8.72 8.86 -0.14 8.49 0.23
3 7.40 7.36 0.04 7.27 0.13 28* 8.37 8.75 -0.38 8.74 -0.37 53* 7.34 7.80 -0.46 7.61 -0.27
4* 6.62 7.43 -0.81 6.98 -0.37 29* 9.55 8.89 0.66 9.01 0.54 54 8.37 8.22 0.15 7.96 0.40
5 6.20 6.30 -0.10 6.45 -0.26 30 8.97 9.21 -0.23 9.17 -0.20 55 8.36 8.58 -0.22 8.26 0.10
6 6.47 6.58 -0.11 6.41 0.06 31 8.81 9.05 -0.25 9.13 -0.32 56 7.19 7.29 -0.10 7.37 -0.18
7 5.70 5.66 0.04 5.93 -0.23 32 9.14 9.21 -0.07 9.16 -0.02 57 8.07 7.68 0.39 7.72 0.34
8 5.70 5.75 -0.05 5.90 -0.20 33* 9.10 9.06 0.04 8.98 0.12 58 7.96 8.02 -0.06 8.02 -0.06
9 6.75 6.93 -0.18 6.93 -0.17 34 8.64 8.86 -0.22 8.92 -0.28 59 8.14 7.82 0.32 8.19 -0.05
10 7.32 7.46 -0.15 7.13 0.18 35 8.89 8.67 0.22 8.37 0.52 60* 8.77 8.21 0.56 8.54 0.23
11 8.64 8.93 -0.29 8.63 0.01 36 8.36 8.41 -0.05 8.32 0.04 61 8.54 8.58 -0.04 8.84 -0.31
12 7.94 8.16 -0.23 8.45 -0.51 37 8.17 7.98 0.19 8.21 -0.04 62 9.05 8.70 0.34 8.85 0.20
13* 8.89 8.92 -0.04 8.81 0.08 38* 8.08 8.67 -0.59 8.34 -0.27 63 6.82 6.94 -0.12 6.71 0.12
14 8.55 8.78 -0.22 8.66 -0.11 39 8.47 8.26 0.21 8.20 0.27 64 8.92 8.64 0.28 8.59 0.33
15 8.80 8.93 -0.14 8.89 -0.10 40 8.42 8.15 0.27 8.04 0.38 65* 8.22 8.61 -0.39 8.27 -0.04
16 8.57 8.65 -0.08 8.88 -0.31 41 7.91 8.33 -0.43 8.34 -0.43 66 8.89 8.90 -0.01 8.69 0.19
17 8.96 8.54 0.42 8.94 0.02 42 8.72 8.81 -0.09 8.69 0.04 67 8.66 8.91 -0.25 8.45 0.20
18 9.22 9.37 -0.15 9.18 0.04 43 8.80 8.61 0.18 8.66 0.14 68 8.60 8.38 0.22 8.54 0.06
19 9.40 9.37 0.03 9.37 0.03 44 8.27 8.47 -0.20 8.82 -0.55 69 8.00 8.26 -0.26 8.27 -0.27
20 8.89 8.51 0.38 8.66 0.23 45 7.43 7.69 -0.26 7.86 -0.43 70 7.04 7.61 -0.57 7.50 -0.45
21 8.38 8.41 -0.04 8.71 -0.34 46 7.96 8.01 -0.05 8.21 -0.25 71 8.66 8.16 0.50 8.29 0.37
22 8.05 8.17 -0.12 8.32 -0.28 47 8.40 8.35 0.04 8.50 -0.11 72 8.30 8.24 0.07 8.15 0.15
23 8.19 8.07 0.12 8.38 -0.19 48 8.02 7.98 0.04 7.98 0.04 73* 8.17 8.12 0.05 8.17 0.00
24 9.40 8.95 0.44 8.93 0.47 49 8.00 8.24 -0.24 8.31 -0.31
25 8.52 8.60 -0.08 8.56 -0.05 50 8.15 8.12 0.04 7.83 0.33

*test set compounds

rather than H-bond donor contribute more to the final 
CoMSIA model, and thus, these fields play crucial roles in 
determining the binding affinity of the PET ligands to the 
target protein. Predicted binding affinities, given as pKi 

values, and the residuals of the final non cross-validated 
CoMFA as well as CoMSIA models are shown in Table 2, 
and the plot of actual pKi values versus predicted pK is 
shown in Figure 3.

The ultimate test for the usefulness of a 3D-QSAR model 
is predicting the activity of new compounds that are not 
included in the dataset that is used to obtain the model. To 
validate the stability and predictive ability of our 3D-QSAR 
model, 10 PET ligands (compounds 4, 13, 28, 29, 33, 38, 53, 

60, 65, 73) that were not included in the construction of 
CoMFA and CoMSIA models are selected as the test set. 
The binding affinities of the test set molecules were predict
ed reasonably well (residuals from 0.04 to 0.81 for CoMFA 
model and 0.04 to 0.54 for CoMSIAall model) and the results 
were also summarized in Table 2 and Figure 3. The predic
tive performance of models on the test set was estimated by 
predictive r2 value (r2pred). The predictive performances of 
CoMFA and CoMSIAall model on the test were r2pred = 0.74 
and r2pred = 0.93, respectively, which indicated that the 
CoMSIA model was more reliable and able to predict bio
logical activity of new derivatives more accurately.

Graphical representations of CoMSIA maps obtained by

Figure 3. Plot of observed pKi versus conventional fit predictions (predicted activity) of training set (a: CoMFA model, b: CoMSIA model) 
and test set (c: CoMFA model, d: CoMSIA model).
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Figure 4. CoMSIA Contour plots: PIB (54) is depicted as a reference molecule: (a) CoMSIAse： green and blue contours predict that the 
binding affinity is enhanced by bulky substituent and positive charge, respectively, whereas yellow contours predict less bulky group is 
favored for activity; (b) CoMSIAda: orange contours predict H-bond acceptors enhance activity and cyan contours predict H-bond donor 
enhance activity; (c) CoMSIAh: Yellow contours predict hydrophobic substituents enhance activity whereas purple contours predict 
hydrophobic substituents decrease activity.

the field type “stDev*coeff‘ are displayed in Figure 4. The 
contour maps were superimposed on the compound PIB (54) 
shown as a capped stick. The CoMSIAse (Fig. 4a) contour 
plots show green and yellow contour plots over and beneath 
the benzothiazole ring, respectively, which means that the 
coplanarity of the PET ligands would be the key for high 
binding affinity to the target protein. Thus, substitution at the 
◎-position of the phenyl ring of 54 (Fig. 4a), which would 
result in distortion of the molecule, would not be beneficial 
to the binding affinity. On the other hand, significant prefer
ences for positive electrostatic interaction around the sulfur 
atom of the benzothiazole ring system could be found, and 
positively charged groups or electron-donating substituents 
may increase the binding affinity of ThioT derivatives to the 
target protein by taking advantage of the electrostatic nature 
of the environment at this position. The contour maps of the 
hydrogen bond donor and acceptor fields describe the spatial 
arrangement of favorable hydrogen bond interactions, and 
these interactions are heavily focused on the donor groups of 
the target protein (Fig. 4b). The orange contours that are 
observed around the thiazole ring, phenolic hydroxyl group 
and anilinic amino group indicate favorable hydrogen bonds 
to donor groups in the target protein. In the hydrophobic 
maps of CoMSIA (Fig. 4c), the yellow and purple contours 
represent the regions of favorable and unfavorable hydro
phobic interactions, respectively. As was shown in the steric 
and electrostatic maps (Fig. 4a), hydrophobic interaction 
above and beneath the benzothiazole ring is detrimental for 
binding affinity. Also, terminal anilinic amino group has a 
strong preference for monoalkyl substituents for high bind
ing affinity. The only site available for beneficial substitu
tion with hydrophobic group is expected to be around the 
position corresponding to the phenolic OH group of 54.
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