Bisvelcrands by Metal Coordination : Monomers for Oligovelcraplexes

Min-Jung Kwak, Chacsang Ihm, and Kyungsoo Pack*
Department of Chemistry and CAMDRC. Soongsil Unversity, Seoml 156-743. Korea. ${ }^{*}$ E-mail: kpaek'àssth.ackr Recened October 2, 2006

Key Words: Velcrand, Metal coordination, Bisvelcrand, Self-assembly, Oligovelcraplex

Noble supramolecules that self-assemble by non-covalent interactions, such as hydrogen bonding. ' metal-ligand, ${ }^{\frac{}{}{ }^{\prime} \text { and }}$ π - π stacking interactions, ${ }^{*}$ have been reported. The efficiency and accuracy of molecular self-assembly to various remarkable suprastructures in biosystems have encouraged many molecular architects to develop in vitro self-assembling systems. Cram et al. reported solvophobic and entro-py-driven self-assembled dimeric systems for which the terms velcrand and velcraplex were coined. ${ }^{4}$ Dalcanale et al. reported a highly adaptive, dynamic velcrand operating in a multimodal fashion, namely solvophobic π - π stacking interaction of 2-methylresorcin[4]arene-based quinoxaline kite velcrands and metal coordination of pyridyl feet. ${ }^{5}$ When two 2-methylresorcin[4]arene-based quinoxaline kite velcrands were bridged in back-to-back fashion by a covalent bond to give a bisvelcrand, the latter then self-assembled to oligovelcraplexes only by solvophobic π - π stacking interactions. ${ }^{6}$
New velcrands 3 and 4 composed of a 2-methylresorcin-[4]arene-based quinoxaline kite velcrand unit and a p pyridylphenyl foot, which are quite soluble in non-polar solvents, were synthesized and characterized. ${ }^{7}$
Suzuki coupling reaction between velcrand 2 , which has a p-bromophenyl foot, and 4-, or 3-pyridyl boronic acid in a mixture of $2 \mathrm{M} \mathrm{KF}, \mathrm{EtOH}$ and THF by reflux under argon for 5 days (Scheme 1) gave velcrands 3 and 4 in 32% and 52% yield, respectively. The key intermediate 2 was synthesized in an overall 9% yield by a heterocoupling reaction among 2-methylresorcinol, hexanal, and p-bromobenzaldehyde to give octol 1 , followed by bridging of two adjacent hydroxy groups by a quinoxaline unit. ${ }^{\circ}$ Velcrands 3 and 4 were fully characterized by 'H NMR, MALDI-1OF-MS and elemental analyses.
Metal coordinations of velcrand 3 with $\mathrm{Pd}(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}$ and $\mathrm{Pt}(\mathrm{dppp})\left(\mathrm{O}^{\prime} \mathrm{f}\right)_{2}$ to give bisvelcrands 5 and $\mathbf{6}$ (Scheme 2),

Scheme 1

Scheme 2
respectively, were followed by 'H NMR spectroscopy in CDCl_{3} at $25^{\circ} \mathrm{C}$ (Fig. 1). Velcrand $\mathbf{3}$ exists as kite conformers in solution, which is shown by the two sets of He peaks in Figure l a). When 0.25 eq of metal complex was added, the ${ }^{1} H$ NMR peaks of $\mathrm{H}_{\mathrm{it}}, \mathrm{H}_{\mathrm{t}}$, and H_{i} (designated in Scheme 2) tend to split into two sets of peaks in a $1: 1$ ratio, indicating the $1: 1$ coexistence of velcrand 3 and bisvelcrand 5 or 6 (partial 'H NMR spectra b and c). However, when 0.50 eq of metal complex was added, only peaks for metal-coordinated bisvelcrand 5 or 6 were apparent (partial spectra d and e).

Table 1 shows the concentration dependence of velcraplex formation for velcrand 3 and bisvelcrand 5 in CDCl_{3} at 298 K. Only velcraplex or oligobisvelcraplex were observed at or above 0.60 mM for both velcrands, which means the

Figure 1. Partial ${ }^{1}\left[\mathrm{I}\right.$ NMR ($400 \mathrm{MIIz} . \mathrm{CDCl}_{3}$. $|3|=2.8 \mathrm{mM}$). (a) $\mathbf{3}$ alone: (b) $[3]\left[\mathrm{Pd}(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}\right]=1: 0.25$; (c) $[3] /\left[\mathrm{Pt}(\mathrm{dppp}) \mathrm{OTt} \mathrm{t}_{2}\right]=$ $1: 0.25$; (d) $[3] /\left[\mathrm{Pd}(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}\right] \quad 1: 0.5$; and (e) [3] $\left[\mathrm{P} 1(\mathrm{dppp}) \mathrm{OH}_{2}\right]=1: 0.5$.

Table 1. Concentration dependence of the association of velcrands

Concentration	Monomer/Velcraplex	
(CDCI. 298 K)	Velcrand 3	Bisvelcrand 5
0.60 mM	$\mathbf{3 . 3}$ ' only	$\mathbf{5}^{\prime \prime}{ }^{\prime}$ only
0.30 mM	$1.0: 3.2$	$1.0: 6.0$
0.15 mM	$1.0: 2.4$	$1.0: 5.2$

"The ratios of $\mathbf{3} 3$ or 5 , are the mole ratios of monomers associated.
spectrum in Figure l a) and d) or e) are those of velcraplex and oligobisvelcraplex, respectively. At 0.30 mM , the monomer/velcraplex ratio was $1.0: 3.2$ and $1.0: 6.0$ for velcrand 3 and bisvelcrand 5 , respectively. At 0.15 mM , the corresponding ratios were $1.0: 2.4$ and $1.0: 5.2$ for velcrand 3 and bisvelcrand 5 , respectively. These results imply that the monomer percentage of velcrand 3 and bisvelcrand 5 at 0.15 mM is 29% and 16%, respectively, which suggests that bisvelerand 5 self-assembles better than velcrand 3 .
Further evidence for the formation of oligobisvelcraplex $6{ }_{i}$ by metal coordination was obtained by electrospray ionization mass spectrometry (ESI-MS), wherein the specific molecular ion peaks of tetrameric oligobisvelcraplex 6, were observed at $m / z 1716.1\left[\left(3-\mathrm{Pd}(\mathrm{dppp}) \mathrm{OTf}_{2}-3\right)_{4}-8 \mathrm{OTf}\right]^{8+}(100$ $\%$, calcd. 1716.4), 2338.1 [(3-Pd(dppp)OTf $\left.\left.\mathrm{O}_{2}-3\right)_{1}-60 \mathrm{Tf}\right]^{6+}$ (20%, calcd. 2338.2) and 2835.8 [(3-Pd(dppp)OTf -3$)_{4}$ $50 \mathrm{Tf}^{5+}$ (10%, calcd. 2835.8).

In conclusion, new velcrands 3 and 4 were synthesized and the formation of their metal-coordinated dimer as well as self-assembled oligobisvelcraplexes were studied using the following techniques: comparison of ${ }^{\mathrm{l}} \mathrm{H}$ NMR peak shifts; investigation of the concentration dependence of velcraplex formation; and ESI MS. The structures and the degrees of oligomerization of oligovelcraplexes are being studied.

Acknowledgment. The financial support from Korea Research Foundation (KRF-2005-005-501102), the Center for Biofunctional Molecular Hybrids (2006), and Soongsil University is gratefully acknowledged.

References

1. (a) Ashton. P. R.: Collins. A. N.: Fyte. M. C. T.: Menter. S.: Stoddart J. I': Williams. D. J. Angew. (hem. Int. Vd. 1997. 36. 735. (b) Castellano. R. K.: Nuckolls. C.: Eichhorn. S. H.: Wood. M. R.: Lovinger. A. J.: Rebek. J. J. Angew. (hem. Int. Ed. 1999. 38. 2603. (c) ten Cata. M. G. I.: Crego-Calama. M.: Reinhoudt. D. N. J. Am. Chem. Soc. 2004. 126. 10840. (d) Choi. It.-I.: Park. Y. S.: Cho. C. S.: Koh. K.: Kim. S.-H.: Pakk. K. Oig. Ieit. 2004. 6. 4431.
2. (a) Leinger. S.: Olenyuk. B.: Stang. I. J. Chem. Rev. 2000. /oot. 853. (b) Yamaguchi. 1 :. Jashiro. S.: lominaga. M.: Kawano. M.: Ozcki. T.: Fujita. M. J. Am. (hem. Soc. 2004. 126. 10818. (c) Pinalli, R.: Cristimi. V.: Sottili. V.: Geremia S.: Campagnolo. M.: Caneschi. A.: Dalcanale. F., J. Am. Chem. Soc. 2004. I26. 6516.
3. (a) Saiki. Y.: Sugiura. H.: Nakamura. K.: Yamaguchi. M.: Hoshi. I.: Ancai. J. J. the (hem. Sor. 2003. 125.9268. (b) Meyer. E. A.: Castellano. R. K.: Dicderich. F. Angew. Chem. Int. Ed. 2003. 42. 1210. (c) Mansikkamki. H.: Nissinen. M.: Rissanen. K. Angew. (hem. Inf. Fd. 2004. 43, 1243.
4. Cram, D. J.: Choi, II.-J.: Bryant. J. A.: Knobler. C. B. ./. Am. Chem. Sor. 1992. //f. 7748.
5. I'irondini. L.: Stendardo. A. G.: Geremia. S.: Campagnolo. M.: Samori. P.: Fokkons. R.: Dalcanalc. E. Angew. Chem. Int. Ed. 2003. +2. 1384.
6. Thm, H.: Ahn. J.-S.: I.ah. M. S.: Koh. Y. II.: Pack, K. Org. Leff. 2004. 6. 3893.
7. para-P'yridyl Velcrand 3: To pyridine-4-bronic acid (104.28 mg. $0.85 \mathrm{mmol})$ and $\left.\mathrm{l}^{\prime} \mathrm{d}^{\left(1 P^{\prime} h_{3}\right.}\right)_{4}(58 \mathrm{mg} .0 .65 \mathrm{mmol})$ under an argon atmosphere were added argon-saturated THF (50 mL). argonsaturated $\mathrm{EtOH}(10 \mathrm{~mL})$, and argon-saturated aqucous 2 M KF $(30 \mathrm{ml})$. and velerand $2(200 \mathrm{mg} .0 .14 \mathrm{mmol})$. The mixture was stimed at relluxing lemperature for 2 days. Alter cooling to room temperature and evaporation of solvents, the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$. and dried over MgSO_{4}. Atter concentration. the residuc was purified by silica gel column chromatography cluted with Ilexane: 「iOAc $(1: 1)$ and the concentrate of the best portions was poured into litorl to give pure 3 as a white wolid (64 mg . $32 \%):$ m.p. $>320^{\circ} \mathrm{C}($ dec $\left.): \mathrm{MALD}[-\mathrm{IO}) \mathrm{WS}(\mathrm{CHR}]_{3}\right): \mathrm{m} / \%$ 1412.43 (100%) $\left[\mathrm{M}^{+} .2824 .96\right.$ (5\%) $[3.3]^{+}$: Eemental analysis: calcd for $\mathrm{C}_{611} \mathrm{H}_{77} \mathrm{~N}_{5} \mathrm{O}_{4}-2 \mathrm{H}_{2} \mathrm{O}$: C. 74.62: H. 5.64: N. 8.70. found: C. $74.69: \mathrm{H} .5 .43: \mathrm{N} .8 .36:{ }^{\mathrm{h}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3} .25{ }^{4} \mathrm{C}\right): \delta$ $=8.59$ (d. 2II. $J=4.0 \mathrm{II}$., pyridyl Ila). 7.80 (br-m. 4 II . quinoxaline Arll). 7.67 (t. $4 \mathrm{II} . J=4.0 \mathrm{H} \%$ quinoxaline Arll), 7.48-7.41 (m. 10H. quinoxaline Ar4lI । py-Ar4fl. py2ll). 7.19 (broad-m. 4 H . quinoxaline ArH). 6.82 (s. $1 \mathrm{H} . \mathrm{ArHe}) .6 .73(\mathrm{~s} .1 \mathrm{H}$. $\mathrm{ArHc}) .6 .36(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArHc}) .6 .04(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArHc}) .5 .25(\mathrm{~s} .1 \mathrm{H} . \mathrm{Hm})$. 3.61-3.49 (br-m. 3H. methine). 3.19 (br-m. 6H. ArCH.). 2.3 (br-
 $\left(\mathrm{Cl}_{2}\right)_{3}\left(\mathrm{Cl}_{3}\right)$.
meta-Pyridyl Velerand 4: The same synthetic procedure of pora-pyridyl velcrands 3 was used. except that pyridine-3-bronic acid was used instead of pyridinc-4-bronic acid. After column chromatography. the concentrate of the best portions was poured into EtOH to give pure 4 as a white solid ($104 \mathrm{mg} .52 \%$) : m.p.:
 $[\mathrm{M}]^{+} .2825 .64(5 \%)[44]^{+}$: Elemental analssis: caled for $\mathrm{C}_{9} \mathrm{H}_{77} \mathrm{~V}_{1} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} .75 .56: \mathrm{H} .5 .57: \mathrm{N} .8 .81$. found: $\mathrm{C} .75 .54: \mathrm{H}$. $5.36:$ N. 8.60 : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3} .25^{\circ} \mathrm{C}\right): \delta=8.78$ (s. IH. a to V atom of pxridyl). 8.53 (d. $1 \mathrm{H} . J=4.0 \mathrm{~Hz}$ a to N atom of pyridyl). $7.85-7.78$ ($\mathrm{m}, 51 \mathrm{I}$, quinovaline ArI + pyridine Il). 7.68 7.65 (m. 5HI. quinoxaline Arll + pyridine H). $7.45-7.18$ (m. 12 H . quinoxaline ArFI । feet Arll) 6.83. 6.76. 6.38. 6.06 (s. 4H. ArII). 5.27 (s. 1H. Hm). $3.82-3.50$ (m. 3 H. methine). 3.21 (m. 6 H. $\left.\mathrm{ArCH} / I_{3}\right) .2 .34\left(\mathrm{~m} .6 \mathrm{H} . \mathrm{ArC} / I_{i}\right) .2 .12-1.58$ (m. $6 \mathrm{H} .\left(/ I_{i}\right) .1 .10-0.57$ (m. $27 \mathrm{H} .(\mathrm{CH}, \mathrm{CH} \cdot \mathrm{s})$.
