DOI QR코드

DOI QR Code

Photoresponsive Azobenzene-cored Dendrons with Terminal Vinyl Groups

  • Choi, Dae-Ock (Department of Chemistry, Sunchon National University) ;
  • Lee, Ji-Hye (Department of Chemistry, Sunchon National University) ;
  • Shin, Kyong-Ha (Department of Chemistry, Sunchon National University) ;
  • Shin, Eun-Ju (Department of Chemistry, Sunchon National University)
  • Published : 2007.06.20

Abstract

Azobenzene-cored dendrons having the photoisomerizable azobenzene core and terminal vinyl groups have been prepared. Absorption bands of azobenzene-cored dendrons are similar except more intense 280 nm band in higher generation azobenzene dendron. All three azobenzene-cored dendrons show reversible photoisomerization similar to simple azobenzene, irrespective of the generation of dendron. On 350 nm irradiation, absorption band around 344 nm decreases and 436 nm band increases. Photoisomerization reactions are very fast for all three azobenzene-cored dendron and the reaction efficiency is dependent of its generation and solvent. In the dark, slow thermal reversion to original absorption spectrum is observed.

Keywords

References

  1. Momotake, A.; Arai, T. J. Photochem. Photobiol. C: Photochem. Rev. 2004, 5, 1 https://doi.org/10.1016/j.jphotochemrev.2004.01.001
  2. Baars, M. W. P. L.; Meijer, E. W. Topics Curr. Chem. 2000, 210, 131 https://doi.org/10.1007/3-540-46577-4_3
  3. Smith, D. K.; Diederich, F. Topics Curr. Chem. 2000, 210, 183 https://doi.org/10.1007/3-540-46577-4_4
  4. Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1665 https://doi.org/10.1021/cr970069y
  5. Newkome, G. R.; He, E.; Moorefield, C. N. Chem. Rev. 1999, 99, 1689 https://doi.org/10.1021/cr9800659
  6. Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681 https://doi.org/10.1021/cr9603892
  7. Frechet, J. M. J. Science 1994, 263, 1710 https://doi.org/10.1126/science.8134834
  8. Tomalia, D. A. Adv. Mater. 1994, 6, 529 https://doi.org/10.1002/adma.19940060703
  9. Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. III Angew. Chem., Int. Ed. Engl. 1990, 29, 138 https://doi.org/10.1002/anie.199001381
  10. Shon, Y.-S.; Choi, D. Chem. Lett. 2006, 644
  11. Lee, D. N.; Park, H. S.; Kim, E. H.; Jun, Y. M.; Lee, J.-Y.; Lee, W.-Y.; Kim, B. H. Bull. Korean Chem. Soc. 2006, 27, 99 https://doi.org/10.5012/bkcs.2006.27.1.099
  12. Lee, J. W.; Kim, B.-K.; Jin, S.-H. Bull. Korean Chem. Soc. 2005, 26, 715 https://doi.org/10.5012/bkcs.2005.26.5.715
  13. Hecht, S.; Frechet, J. M. J. Angew. Chem., Int. Ed. Engl. 2001, 40, 74 https://doi.org/10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C
  14. Mo, Y.-J.; Jiang, D.-L.; Uyemura, M.; Aida, T.; Kitagawa, T. J. Am. Chem. Soc. 2005, 127, 10020 https://doi.org/10.1021/ja042196z
  15. Hasobe, T.; Kamat, P. V.; Absalom, M. A.; Kashiwagi, Y.; Sly, J.; Crossley, M. J.; Hosomizu, K.; Imahori, H.; Fukuzumi, S. J. Phys. Chem. B 2004, 108, 12865 https://doi.org/10.1021/jp048404r
  16. Archut, A.; Vögtle, F.; De Cola, L.; Azzellini, G. C.; Balzani, V.; Ramanujam, P. S.; Berg, R. H. Chem. Eur. J. 1998, 4, 699 https://doi.org/10.1002/(SICI)1521-3765(19980416)4:4<699::AID-CHEM699>3.0.CO;2-9
  17. Shinkai, S.; Manabe, O. Topics Curr. Chem. 1984, 121, 67 https://doi.org/10.1007/3-540-12821-2_3
  18. Kumar, G. S.; Neckers, D. C. Chem. Rev. 1989, 89, 1915 https://doi.org/10.1021/cr00098a012
  19. Momotake, A.; Arai, T. Tetrahedron Lett. 2004, 45, 4131 https://doi.org/10.1016/j.tetlet.2004.03.152
  20. Jiang, D.-L.; Aida, T. Nature 1997, 388, 454
  21. Junge, D. M.; McGrath, D. V. Chem. Commun. 1997, 857
  22. Archut, A.; Azzellini, G. C.; Balzani, V.; De Cola, L.; Vögtle, F. J. Am. Chem. Soc. 1998, 120, 12187 https://doi.org/10.1021/ja9822409
  23. Kay, K.-Y.; Han, K.-J.; Yu, Y.-J.; Park, Y. D. Tetrahedron Lett. 2002, 43, 5053

Cited by

  1. Synthesis and photophysical properties of triphenylamine-based multiply conjugated star-like molecules vol.39, pp.9, 2015, https://doi.org/10.1039/C5NJ00605H
  2. Facile Preparation of Hybrid Zinc Porphyrin Dendrimer Using Coordination Complex vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10677
  3. Photoresponsive Arylether Dendrimers with Azobenzene Core and Terminal Vinyl Groups vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.761
  4. Photoresponsive Azobenzene-modified Gold Nanoparticle vol.29, pp.6, 2007, https://doi.org/10.5012/bkcs.2008.29.6.1259
  5. Porphyrin-Cored Arylether Dendrimers with Vinyl Groups in the Periphery vol.29, pp.7, 2008, https://doi.org/10.5012/bkcs.2008.29.7.1353
  6. Porphyrin-Cored Arylether Dendrimers with Vinyl Groups in the Periphery vol.29, pp.7, 2008, https://doi.org/10.5012/bkcs.2008.29.7.1353
  7. Trans–cis isomerization of arylether dendrimers with azobenzene core and terminal hydroxy groups vol.77, pp.2, 2010, https://doi.org/10.1016/j.saa.2010.06.022
  8. Synthesis, Photochemical, Electrochemical and Cytotoxic Studies on Azobenzene Cored Dendrimer Decorated with Chalcone Motif vol.3, pp.19, 2018, https://doi.org/10.1002/slct.201800286