DOI QR코드

DOI QR Code

In situ Spectroelectrochemical Study of Quercetin Oxidation and Complexation with Metal Ions in Acidic Solutions

  • Xu, Guang-Ri (Department of Bioscience and Biotechnology, Konkuk University) ;
  • In, Mo-Youn (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Yuan, Yong (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Jae-Joon (Department of Applied Chemistry, Konkuk University) ;
  • Kim, Sung-Hyun (Department of Bioscience and Biotechnology, Konkuk University)
  • Published : 2007.05.20

Abstract

Keywords

References

  1. Mehansho, H.; Butler, L. G.; Carlson, D. M. Ann. Rev. Nutr. 1987, 7, 423 https://doi.org/10.1146/annurev.nu.07.070187.002231
  2. Baxter, N. J.; Williamson, M. P.; Lilley, T. H.; Haslam, E. J. Chem. Soc. Faraday Trans. 1996, 92, 231 https://doi.org/10.1039/ft9969200231
  3. Xu, G.; Kim, S. Electroanalysis 2006, 18, 1786 https://doi.org/10.1002/elan.200603587
  4. Volikakis, G. J.; Efstathiou, C. E. Talanta 2000, 51, 775 https://doi.org/10.1016/S0039-9140(99)00352-5
  5. Choi, Y.; Lee, J.; Cho, K. W.; Hwang, S.; Jeong, K. J.; Jung, S. Bull. Korean Chem. Soc. 2005, 26, 120
  6. Mercedes, J.; Francisco, G. C. J. Agric. Food Chem. 1999, 47, 56 https://doi.org/10.1021/jf9805653
  7. Lorena, F.; Pedro, G. R.; RaMon, V.; Francisco, G. C. J. Agric. Food Chem. 2003, 51, 7781 https://doi.org/10.1021/jf034656y
  8. Kubo, I.; Nihei, K. I.; Shimizu, K. Bioorg. Med. Chem. 2004, 12, 5343 https://doi.org/10.1016/j.bmc.2004.07.050
  9. Kopacz, M.; Kopacz, S.; Skuba, E. Russ. J. General Chem. 2004, 74, 957 https://doi.org/10.1023/B:RUGC.0000042436.62526.80
  10. De Souza, R. F. V.; De Giovan, W. F. Spectrochem. Acta Part A 2005, 61, 1985 https://doi.org/10.1016/j.saa.2004.07.029
  11. Bodini, M. E.; Copia, G.; Tapia, R.; Leighton, F.; Herrera, L. Polyhedron 1999, 18, 2233 https://doi.org/10.1016/S0277-5387(99)00124-2
  12. Cornard, J. P.; Merlin, J. C. J. Inorg. Biochem. 2002, 92, 19 https://doi.org/10.1016/S0162-0134(02)00469-5
  13. Wang, Z.-P.; Shi, L.-L.; Chen, G.-S.; Cheng, K.-L. Talanta 2000, 51, 315
  14. Zhou, J.; Gong, G. Q.; Zhang, Y. N.; Qu, J. Q.; Wang, L. F.; Xu, J. W. Anal. Chim. Acta 1999, 381, 17 https://doi.org/10.1016/S0003-2670(98)00671-0
  15. Le Nest, G.; Caille, O.; Woudstra, M.; Roche, S.; Burlat, B.; Belle, V.; Guigliarelli, B.; Lexa, D. Inorg. Chim. Acta 2004, 357, 2027 https://doi.org/10.1016/j.ica.2003.11.046
  16. Zhou, J.; Wang, L.-F.; Wang, J.-Y.; Tang, N. J. Inorg. Biochem. 2001, 83, 41
  17. Shin, S.; Choi, Y.; Na, S.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2006, 27, 281 https://doi.org/10.5012/bkcs.2006.27.2.281
  18. Baik, B.; Kwag, G.; Kim, S. Bull. Korean Chem. Soc. 2006, 27, 329 https://doi.org/10.5012/bkcs.2006.27.2.329
  19. Miller, E.; Schreier, P. Food Chem. 1985, 17, 143 https://doi.org/10.1016/0308-8146(85)90083-4
  20. Takahama, U. Plant Cell Phys. 1987, 28, 953

Cited by

  1. Preparation, Characterization, and DNA Binding Studies of Water-Soluble Quercetin–Molybdenum(VI) Complex vol.30, pp.7, 2011, https://doi.org/10.1089/dna.2010.1205
  2. Reduction of Hexavalent Chromium Using Naturally-Derived Flavonoids vol.46, pp.19, 2012, https://doi.org/10.1021/es301060q
  3. Deprotonation Mechanism and Acidity Constants in Aqueous Solution of Flavonols: a Combined Experimental and Theoretical Study vol.117, pp.41, 2013, https://doi.org/10.1021/jp4049617
  4. Mechanism and Kinetics of Hexavalent Chromium Chemical Reduction with Sugarcane Molasses vol.226, pp.11, 2015, https://doi.org/10.1007/s11270-015-2629-6
  5. Reactivity, characterization of reaction products and immobilization of lead in water and sediments using quercetin pentaphosphate vol.18, pp.3, 2016, https://doi.org/10.1039/C5EM00580A
  6. Real-time monitoring of oxidative injury of vascular endothelial cells and protective effect of quercetin using quartz crystal microbalance vol.408, pp.29, 2016, https://doi.org/10.1007/s00216-016-9959-0
  7. Determination of Quercetin and Luteolin in Paprika Samples by Voltammetry and Partial Least Squares Calibration vol.29, pp.12, 2017, https://doi.org/10.1002/elan.201700403
  8. reduction and inhibition of cardiolipin-induced peroxidase activity vol.43, pp.3, 2017, https://doi.org/10.1002/biof.1357
  9. Systematization of the results of the chromatography–mass spectrometry identification of the products of quercetin oxidation by atmospheric oxygen in aqueous solutions vol.72, pp.10, 2017, https://doi.org/10.1134/S1061934817080147
  10. vol.38, pp.4, 2009, https://doi.org/10.1108/03699420910973332
  11. Spectroscopic Studies on the Interaction of Quercetin–Terbium(III) Complex with Calf Thymus DNA vol.30, pp.3, 2011, https://doi.org/10.1089/dna.2010.1063
  12. Studies on Transition Metal-Quercetin Complexes Using Electrospray Ionization Tandem Mass Spectrometry vol.20, pp.5, 2015, https://doi.org/10.3390/molecules20058583
  13. -BuOH water system using a kinetic approach vol.65, pp.10, 2018, https://doi.org/10.1002/jccs.201700342
  14. Surface Modification of Gold by Quercetin Monolayer for the Electrochemical Determination of Copper(II) vol.20, pp.15, 2008, https://doi.org/10.1002/elan.200804236
  15. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations pp.1538-0254, 2020, https://doi.org/10.1080/07391102.2019.1574239
  16. Selective Monitoring of Rutin and Quercetin based on a Novel Multi-wall Carbon Nanotube-coated Glassy Carbon Electrode Modified with Microbial Carbohydrates α-Cyclosophorohexadecaose and Succino vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1897
  17. Quercetin Delivery into Cancer Cells with Single Walled Carbon Nanotubes vol.1, pp.1, 2007, https://doi.org/10.7763/ijbbb.2011.v1.4
  18. Electrochemical biomemory devices based on self-assembled graphene-Shewanella oneidensis composite biofilms vol.3, pp.41, 2007, https://doi.org/10.1039/c3ra42850h
  19. Characteristics and kinetics of hexavalent chromium reduction by gallic acid in aqueous solutions vol.71, pp.11, 2015, https://doi.org/10.2166/wst.2015.157
  20. A neutral Cu-based MOF for effective quercetin extraction and conversion from natural onion juice vol.9, pp.58, 2007, https://doi.org/10.1039/c9ra04551a
  21. Insight on nano-platinum-catalyzed dehydrogenation of quercetin in presence of peroxide vol.21, pp.12, 2019, https://doi.org/10.1007/s11051-019-4712-1
  22. Arsenic Removal from Water by Green Synthesized Magnetic Nanoparticles vol.11, pp.12, 2007, https://doi.org/10.3390/w11122520
  23. Potassium Complexes of Quercetin-5′-Sulfonic Acid and Neutral O-Donor Ligands: Synthesis, Crystal Structure, Thermal Analysis, Spectroscopic Characterization and Physicochemical Properties vol.14, pp.22, 2007, https://doi.org/10.3390/ma14226798