DOI QR코드

DOI QR Code

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

  • Habibi-Yangjeh, Aziz (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili)
  • Published : 2007.09.20

Abstract

Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.

Keywords

References

  1. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; VCH: 2003; Chap. 4-7
  2. Marcus, Y. J. Chem. Soc., Perkin Trans. 2 1994, 1015
  3. Cativiela, C.; Garcia, J. I.; Gil, J.; Martinez, R. M.; Mayoral, J. A.; Salvatella, L.; Urieta, J. S.; Mainer, A. M.; Abraham, M. H. J. Chem. Soc., Perkin Trans. 2 1997, 653
  4. Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2000, 32, 431
  5. Gholami, M. R.; Habibi-Yangjeh, A. J. Phys. Org. Chem. 2000, 13, 468
  6. Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2001, 33, 118. 7. Habibi-Yangjeh, A.; Gholami, M. R.; Mostaghim, R. J. Phys. Org. Chem. 2001, 14, 884
  7. Habibi-Yangjeh, A.; Gholami, M. R.; Mostaghim, R. J. Phys. Org. Chem. 2001, 14, 884
  8. Harifi, A.-R.; Habibi-Yangjeh, A.; Gholami, M. R. J. Phys. Chem. B 2006, 110, 7073
  9. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, Germany, 2000
  10. Famini, G. R.; Wilson, L. Y. J. Phys. Org. Chem. 1999, 12, 645 https://doi.org/10.1002/(SICI)1099-1395(199908)12:8<645::AID-POC165>3.0.CO;2-S
  11. Famini, G. R.; Penski, C. E.; Wilson, L. Y. J. Phys. Org. Chem. 1992, 5, 395
  12. Famini, G. R. Chemosphere 1997, 35, 2417 https://doi.org/10.1016/S0045-6535(97)00287-7
  13. Lowrey, A. H.; Famini, G. R.; Wilson, L. Y. J. Chem. Soc., Perkin Trans. 2 1997, 1381
  14. Cronce, D. T.; Famini, G. R.; Soto, J. A. D.; Wilson, L. Y. J. Chem. Soc., Perkin Trans. 2 1998, 1293
  15. Engberts, J. B. F. N.; Famini, G. R.; Perjessy, A.; Wilson, L. Y. J. Phys. Org. Chem. 1998, 11, 261 https://doi.org/10.1002/(SICI)1099-1395(199804)11:4<261::AID-POC997>3.0.CO;2-0
  16. Famini, G. R.; Benyamin, D.; Kim, C.; Veerawat, R.; Wilson, L. Y. Collect. Czech. Chem. Commun. 1999, 64, 1727 https://doi.org/10.1135/cccc19991727
  17. Habibi-Yangjeh, A. Indian J. Chem. B 2003, 42, 1478
  18. Habibi-Yangjeh, A. Indian J. Chem. B 2004, 43, 1504
  19. Patterson, D. W. Artificial Neural Networks: Theory and Applications; Simon and Schuster: New York, 1996; Part III, Chap. 6
  20. Bose, N. K.; Liang, P. Neural Network Fundamentals; McGraw-Hill: New York, 1996
  21. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinhein, 1999
  22. Agatonovic-Kustrin, S.; Beresford, R. J. Pharm. Biomed. Anal. 2000, 22, 717
  23. Xing, W. L.; He, X. W. Anal. Chim. Acta 1997, 349, 283 https://doi.org/10.1016/S0003-2670(97)00249-3
  24. Bunz, A. P.; Braun, B.; Janowsky, R. Fluid Phase Equilib. 1999, 158, 367 https://doi.org/10.1016/S0378-3812(99)00058-8
  25. Homer, J.; Generalis, S. C.; Robson, J. H. Phys. Chem. Chem. Phys. 1999, 1, 4075 https://doi.org/10.1039/a904096j
  26. Goll, E. S.; Jurs, P. C. J. Chem. Inf. Comp. Sci. 1999, 39, 974 https://doi.org/10.1021/ci990071l
  27. Vendrame, R.; Braga, R. S.; Takahata, Y.; Galvao, D. S. J. Chem. Inf. Comput. Sci. 1999, 39, 1094 https://doi.org/10.1021/ci990326v
  28. Gaspelin, M.; Tusar, L.; Smid-Korbar, J.; Zupan, J.; Kristl, J. Int. J. Pharm. 2000, 196, 37
  29. Gini, G.; Cracium, M. V.; Konig, C.; Benfenati, E. J. Chem. Inf. Comput. Sci. 2004, 44, 1897 https://doi.org/10.1021/ci0401219
  30. Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K.; Sekiya, A. J. Fluorine Chem. 2002, 16, 163
  31. Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson. 2004, 171, 176 https://doi.org/10.1016/j.jmr.2004.08.011
  32. Koziol, J. Internet Electron. J. Mol. Des. 2002, 1, 80
  33. Wegner, J. K.; Zell, A. J. Chem. Inf. Comput. Sci. 2003, 43, 1077 https://doi.org/10.1021/ci034006u
  34. Valkova, I.; Vracko, M.; Basak, S. C. Anal. Chim. Acta 2004, 509, 179 https://doi.org/10.1016/j.aca.2003.12.035
  35. Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson. 2004, 171, 176 https://doi.org/10.1016/j.jmr.2004.08.011
  36. Habibi-Yangjeh, A.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 6, 139
  37. Habibi-Yangjeh, A.; Nooshyar, M. Physics and Chemistry of Liquids 2005, 43, 239 https://doi.org/10.1080/00319100500061233
  38. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 2007 https://doi.org/10.5012/bkcs.2005.26.12.2007
  39. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. J. Mol. Model 2006, 12, 338
  40. Marcus, Y. The Properties of Solvents; John Wiley and Sons: New York, 1999
  41. Turner, J. V.; Maddalena, D. J.; Cutler, D. J. Int. J. Pharm. 2004, 270, 209 https://doi.org/10.1016/j.ijpharm.2003.10.011
  42. Matlab 6.5; Mathworks: 1984-2002
  43. Demuth, H.; Beale, M. Neural Network Toolbox; Mathworks: Natick, MA, 2000

Cited by

  1. Polarity Scale of Ionic Liquids Using a QSPR Approach vol.54, pp.50, 2015, https://doi.org/10.1021/acs.iecr.5b02982
  2. Prediction of non-ideal behavior of polarity/polarizability scales of solvent mixtures by integration of a novel COSMO-RS molecular descriptor and neural networks vol.10, pp.39, 2008, https://doi.org/10.1039/b807617k
  3. Application of PC-ANN to Acidity Constant Prediction of Various Phenols and Benzoic Acids in Water vol.26, pp.5, 2008, https://doi.org/10.1002/cjoc.200890162
  4. Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks vol.41, pp.3, 2009, https://doi.org/10.1002/kin.20386
  5. A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents vol.12, pp.8, 2010, https://doi.org/10.1039/b920651p
  6. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  7. Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.833
  8. QSPR STUDY OF THE SOLUTE POLARITY PARAMETER IN REVERSED-PHASE LIQUID CHROMATOGRAPHY USING PARTIAL LEAST SQUARES AND ARTIFICIAL NEURAL NETWORK vol.36, pp.1, 2007, https://doi.org/10.1080/10826076.2011.644056