Facile Synthesis of 4-Substituted 3-Exo-methylenechroman Derivatives via Radical Cyclization Starting from Salicylaldehydes

Saravanan Gowrisankar, Ka Young Lee, and Jae Nyoung Kim*
Deparment of Chemistry and Institute of Basic Science, Chonnam Mational Lhwersity, Gwangiu 500-757, Korea
${ }^{\prime}$ E-mail: kimioachonnam.ackr
Received January 11, 2007

Sy nthesis of 4 -substituted 3-exo-methylenechroman derivatives was carried out by the n - $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated vinyl radical cyclization as the key step starting from various salicylaldehydes.
Key Words: Exo-methy lenechroman, Radical cyclization. Salicylaldehydes

Introduction

The family of 1-benzopyran subunits such as chromans. ${ }^{1}$ 2 H -chromenes. " and 4 H -chromenes ${ }^{2}$ represents an important family of oxygen-containing natural products and showed many interesting biological activities. ${ }^{1.2}$ Thus, many synthetic procedures for these compounds have been reported. ${ }^{1-3}$ However the synthesis of exo-methylenechromans. the regioisomeric form of chromenes (Figure 1) has not been reported much even though this type of compounds would also show interesting biological activities. ${ }^{\text {3 }}$ Very recently. Roy and Jana reported the novel synthesis of exo-methylenechromans by radical-promoted cyclization using $\mathrm{Cp}_{2} \mathrm{TiCl}^{\text {.3a }}$

Results and Discussion

During the studies on the radical cyclization with modified Baylis-Hillman adducts having triple bond. ${ }^{+}$we presumed that exo-methylenechroman derivatives could be syinthesized by using vinyl radical cyclization protocol as shown in Scheme $1^{4.6}$ However. literature survey showed that such examination was never tried to our surprise. As shown in Scheme l. the starting material $2 a$ was prepared straightforwardly from salicylaldehyde (1a) by the Wittig reaction with carbethoxymethylene triphenylphosphorane and the following propargylation $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$. propargyl bromide. DMF)
in good yield. Radical cyclization of $\mathbf{2} \mathbf{a}$ was carried out by following the typical radical cyclization procedure ${ }^{+-6}$ with n $\mathrm{Bu}_{2} \mathrm{SnH}$ in the presence of AlBN (cat) in benzene followed by destannylation with aq HCl in ether to give the desired exo-methy lenechroman derivative 3 a in 85% isolated y ield. The reaction mechanism was also shown in Scheme 1.

As shown in Table 1. we prepared other exo-methylenechroman derivatives $\mathbf{3 b}-\mathbf{e}$ according to the above general procedure in high yields from 2b-e. When we subjected $2 f$ under the radical cyclization conditions. exo-methylenechroman derivative $3 f$ was obtained in 46% yield via the 6 -exo-trig mode. In addition. in the reaction mixture we isolated seven-membered ring compound 4 in 40% as a sm anii (1:1) mixture, which was formed via 7-endo-trig mode (entry 6). The results might be attributed to the increased

chroman

2 H -chromene

4H-chromene

exo-methylenechroman
Figure 1

Scheme 1

Table 1. Synthesis of 4-substituted 3-methylenechromans
Entry
 5 h . The first yield in parenthesis refer to Wittig step and the second one to propargylation. Conditions: (i) n - Bu_{3} SnH (1.1 equiv). AlBN (cat), benzene. reflux, 1 h , (ii) HCl , ether. $0^{\circ} \mathrm{C}$ to rt 30 min . 'Conditions: (i) $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{KOH}$ (1.1 equiv), reflux. 20 h ($34^{\circ} \circ$), (ii) propargylation (91 0°).
steric crowdedness around the β-position of the α, β unsaturated ester moiety of $\mathbf{2 f}$.
It is interesting to note that the reaction of 5 under the same conditions gave the reduction compound $6(60 \%)$ as the major product (Scheme 2). We could not isolate the corresponding $7-\mathrm{mem}$ bered cyclized compound. Radical cyclization of aryl radical in a 7 -exo-trig mode was not effective in this case. As a next trial. we prepared 7 from 1a by the successive propargylation and Knoevenagel condensation with malononitrile. However. the radical cyclization of 7 was ineffective and we obtained simple reduction compounds 8 and 9 in 38% and 42%. respectively (Scheme 3). ${ }^{7}$ Finally the exo-methylene moiety of 3 a could be readily isomerized into the endo form of compound $\mathbf{1 0}, 2 \mathrm{H}$-chromene skeleton in Figure 1. by DBU treatment in high yield (Scheme 4).

In summary. we developed a facile and practical method for the synthesis of 4 -substituted 3-exo-methylenechroman derivatives by the n - $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated vinyl radical cyclization as the key step starting from various salicylaldelydes.

Experimental Section

General procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded in CDCl_{3}. The signal positions are reported in ppm relative to TMS (δ scale) used as an internal standard. IR spectra are reported in cm^{-1}. Mass spectra were obtained from the Korea Basic Science lnstitute (Gwangju branch). The elemental analyses were carried out at Korea Research Institute of Chemical Technology: Daejeon. Korea. All reagents were purchased from commercial sources and used without further treatment. The

Scheme 2

Scheme 3

Scheme 4
separations were carried out by flash column chromatography over silica gel (230-400 mesh ASTM). Organic extracts were dried over anhydrous MgSO_{4} and the solvents were evaporated on a rotary evaporator under water aspirator pressure
Synthesis of starting materials 2a-f, 5 and 7. The synthesis of starting materials. 2a-d. 2f. and 5. was carried out by Wittig reaction $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}\right.$, benzene, reflux) of the corresponding salicyladehydes and the following propargylation with propargyl bromide ($\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMF}$. rt) or benzylation with 2-bromobenzyl bromide $\left(\mathrm{K}_{3} \mathrm{CO}_{3} / \mathrm{DMF}\right.$. rt) Other starting materials. 2e and 7. were prepared by sequential propargylation of salicyladehyde followed by Knoevenagel condensation reaction with $\mathrm{CH}_{3} \mathrm{CN}$ (KOH . reflux) $)^{8}$ or with malononitrile ($\mathrm{Ph}_{3} \mathrm{P}$, benzene, reflux) ${ }^{?}$

Compound 2a: colorless oil: 86%; IR (neat) 3294.2981. 2121. 1714. $1633 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.25$ $(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}) .2 .45(\mathrm{t} . J=2.4 \mathrm{~Hz} . \mathrm{IH}), 4.17(\mathrm{q} . J=7.2$ Hz .2 H). 4.68 (d. $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}) .6 .40(\mathrm{~d} . J=16.2 \mathrm{~Hz} .1 \mathrm{H})$. $6.89-7.46(\mathrm{~m} .4 \mathrm{H}) .7 .90(\mathrm{~d} . J=16.2 \mathrm{~Hz}, \mathrm{lH})$.
Compound 2b: colorless oil: 83\%: IR (neat) 3298. 2981. 2123. 1710. $1633 \mathrm{~cm}^{-1}$; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,500 \mathrm{MHz}\right) \delta 1.25$ $(\mathrm{t}, J=7.5 \mathrm{~Hz} .3 \mathrm{H}) .2 .47(\mathrm{t}, J=2.5 \mathrm{~Hz} . \mathrm{IH}), 4.18(\mathrm{q} . J=7.5$ Hz .2 H). 4.68 (d. $J=2.5 \mathrm{~Hz}, 2 \mathrm{H}) .6 .40(\mathrm{~d} . J=16.0 \mathrm{~Hz} .1 \mathrm{H})$. $6.90(\mathrm{~d} . J=9.0 \mathrm{~Hz} .1 \mathrm{H}) .7 .21(\mathrm{dd} . J=9.0$ and $2.5 \mathrm{~Hz}, ~ 1 \mathrm{H})$. $7.41(\mathrm{~d} . J=2.5 \mathrm{~Hz} .1 \mathrm{H}) .7 .82(\mathrm{~d} . J=16.0 \mathrm{~Hz} .1 \mathrm{H})$.
Compound 2c: colorless oil: 86% IR (neat) 3294. 2981.
2121. 1709. $1631 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (CDCl 3.500 MHz$) \delta 1.25$ (t. $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.22(\mathrm{~s} .3 \mathrm{H}), 2.43(\mathrm{t} . J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$. $4.17(\mathrm{q} . J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .4 .66(\mathrm{~d} . J=2.5 \mathrm{~Hz} .2 \mathrm{H}) .6 .40(\mathrm{~d} . J$ $=16.0 \mathrm{~Hz} .1 \mathrm{H}) .6 .86(\mathrm{~d} . J=8.5 \mathrm{~Hz} .1 \mathrm{H}) .7 .06(\mathrm{~d} . J=8.5 \mathrm{~Hz}$. $1 \mathrm{H}) .7 .25(\mathrm{~s} .1 \mathrm{H}) .7 .88(\mathrm{~d} . J=16.0 \mathrm{~Hz} .1 \mathrm{H})$.
Compound 2d: colorless oil: 84\%: IR (neat) 3292. 2979. 2121. 1712. $1633 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR (CDCl3. 500 MHz) $\delta 1.26$ (t. $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .2 .38(\mathrm{t} . J=2.5 \mathrm{~Hz} .1 \mathrm{H}) .3 .79(\mathrm{~s} .3 \mathrm{H})$, $4.18(\mathrm{q} . J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .4 .69(\mathrm{~d} . J=2.5 \mathrm{~Hz} .2 \mathrm{H}) .6 .38(\mathrm{~d} . J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .6 .89-7.46(\mathrm{~m} .3 \mathrm{H}) .8 .04(\mathrm{~d} . J=16.0 \mathrm{~Hz} .1 \mathrm{H})$.

Compound 2e: colorless oil: 91% : IR (neat) $3236,2212$. $1608.1240 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.57(\mathrm{t}, J=$ $2.4 \mathrm{~Hz} .1 \mathrm{H}) .4 .77(\mathrm{~d} . J=2.4 \mathrm{~Hz} .2 \mathrm{H}) .6 .06(\mathrm{~d} . J=16.8 \mathrm{~Hz}$. 1 H). $7.00-7.06(\mathrm{~m}, 2 \mathrm{H}) .7 .37-7.43(\mathrm{~m} .2 \mathrm{H}) .7 .66(\mathrm{~d} . J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 56.22 .76 .32 .77 .66$, 97.37. 112.73. 118.82, 121.77. 123.11, 128.79. 132.14. 146.04. 156.02

Compound 2f: colorless oil: 65%. IR (neat) 3292. 2981 . 2121. 1712. $1633 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 1.23$ (t. $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .2 .27(\mathrm{~d} . J=1.5 \mathrm{~Hz} .3 \mathrm{H}) .2 .42(\mathrm{t} . J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}) .4 .13(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .4 .64(\mathrm{~d}, J=2.4 \mathrm{~Hz} .2 \mathrm{H})$. 581 (q. $J=1.5 \mathrm{~Hz} .1 \mathrm{H}$). $6.88-7.26(\mathrm{~m} .4 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.32,19.94 .56 .03 .59 .73,75.63 .78 .39$. 112.77. 119.50, 121.55. 129.03. 129.26, 133.79. 154.23, $156.15,166.70$.
Compound 5: colorless oil: 87% : IR (neat) 3070. 2979. 1712. 1631, $1599 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR (CDCl 3.300 MHz) $\delta 1.34$ (t. $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.26(\mathrm{q} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H})$. $6.53(\mathrm{~d} . J=16.2 \mathrm{~Hz} .1 \mathrm{H}) .6 .91-7.60(\mathrm{~m} .8 \mathrm{H}) .8 .14(\mathrm{~d} . J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}$).

Compound 7: colorless oil: 86\%: IR (neat) 3282. 2227. $2121.1587 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.60(\mathrm{t}, J=$ $2.4 \mathrm{~Hz} .1 \mathrm{H}), 4.84(\mathrm{~d}, J=2.4 \mathrm{H} \angle, 2 \mathrm{H}), 7.02-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.57-7.63(\mathrm{~m} .1 \mathrm{H}) .8 .19-8.22(\mathrm{~m} .1 \mathrm{H}) .8 .30(\mathrm{~s} .1 \mathrm{H})$.

Typical procedure for the radical cyclization of 2a to

3a. A stirred mixture of $\mathbf{2 a}$ ($230 \mathrm{mg}, 1.0 \mathrm{mmol}$). $n-\mathrm{Bu}_{3} \mathrm{SnH}$ (320 mg .1 .1 mmol). AIBN (cat) in benzene (3 mL) was heated to reflux for 1 h . After cooling to rt the reaction mixture was poured into ether and a few drops of $c-\mathrm{HCl}$ was added and stirred vigorously for 30 min . After usual aqueous workup procedure and column chromatographic purification process (hexanes/EtOAc. 7:3) we obtained 3a as colorless oil. $198 \mathrm{mg}(85 \%)$. The spectroscopic data of the prepared compounds 3 a-f. 4,6 and $8-10$ are as follows.

Compound 3a: colorless oil: 85\%: IR (neat) 2979. 1732. $1581.1489 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .2 .57(\mathrm{dd} . J=15.0$ and 10.0 Hz .1 H$) .2 .71$ (dd. J $=15.0$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}) .3 .85$ (dd. $J=10.0$ and 5.0 Hz .1 H$)$. 4.05 (q. $J=7.0 \mathrm{~Hz} .2 \mathrm{H}) .4 .39(\mathrm{~d} . J=12.2 \mathrm{~Hz} .1 \mathrm{H}) .4 .54(\mathrm{~d} . J$ $=12.2 \mathrm{~Hz} .1 \mathrm{H}) .5 .04(\mathrm{~s} .1 \mathrm{H}) .5 .09(\mathrm{~s} .1 \mathrm{H}), 7.00-7.16(\mathrm{~m}$. $2 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}):{ }^{15} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 14.17$, $38.87,43.10,60.46,67.45 .113 .57,116.91,120.87,124.63$. 127.91. 128.67. 140.69. 154.07. 171.18. FAB Mass 233 $\left(\mathrm{M}^{-}+1\right)$ Anal. Calcd for $\mathrm{C}_{1+} \mathrm{H}_{16} \mathrm{O}_{3}$: C. $72.39 ; \mathrm{H} .6 .94$. Found: C. 72.28: H. 6.98. The structure of compound $\mathbf{3 a}$ was confirmed by HMBC and HSQC experiments as exomethylenechromane skeleton.

Compound 3b: colorless oil: 89\%: IR (neat) 2981. 1732. $1483 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.20(\mathrm{t} . J=7.0$ $\mathrm{Hz} .3 \mathrm{H}) .2 .58$ (dd. $J=15.0$ and 10.0 Hz .1 H$) .2 .70(\mathrm{dd} . J=$ 15.0 and 5.0 Hz .1 H$) .3 .82(\mathrm{dd} . J=10.0$ and $5.0 \mathrm{~Hz}, ~ 1 \mathrm{H})$. 4.08 (q. $J=7.0 \mathrm{~Hz} .2 \mathrm{H}) .4 .41(\mathrm{~d} . J=12.5 \mathrm{~Hz} .1 \mathrm{H}) .4 .54(\mathrm{~d} . J$ $=12.5 \mathrm{~Hz} .1 \mathrm{H}) .5 .08(\mathrm{~s} .1 \mathrm{H}) .5 .12(\mathrm{~s} .1 \mathrm{H}) .6 .68(\mathrm{~d} . J=8.5$ $\mathrm{Hz} .1 \mathrm{H}) .6 .99-7.03(\mathrm{~m} .2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3 .} .125 \mathrm{MHz}\right) \delta$ $14.23,38.81 .42 .94$. $60.71 .67 .71 .114 .22,118.37,125.62$. 126.25. 128.03. 128.33, 139.91. 152.79. 170.94: FAB Mass $267\left(\mathrm{M}^{-}+\mathrm{l}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{3}$: C, $63.04 ;$ H. 5.67. Found: C. 62.86: H. 5.84.

Compound 3c: colorless oil: 91%. IR (neat) 2981.1732. $1498 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.17(\mathrm{t} . J=7.5$ $\mathrm{Hz} .3 \mathrm{H}) .2 .16(\mathrm{~s} .3 \mathrm{H}) .2 .56(\mathrm{dd} . J=15.0$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H})$. $2.70(\mathrm{dd}, J=15.0$ and 5.0 Hz .1 H$) .3 .80(\mathrm{dd} . J=10.0$ and 5.0 Hz .1 H). 4.05 (q. $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .4 .36(\mathrm{~d} . J=12.5 \mathrm{~Hz} .1 \mathrm{H})$. $4.51(\mathrm{~d} . J=12.5 \mathrm{~Hz} .1 \mathrm{H}), 5.03$ (s. 1 H$), 5.07$ (s. 1 H$) .6 .64$ (d. $J=9.0 \mathrm{~Hz} .1 \mathrm{H}), 6.82-6.84(\mathrm{~m} .2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3 .} .75\right.$ $\mathrm{MHz}) \delta$ 14.18. 20.41. 38.91, 43.17. 60.43, 67.45. 113.43. $116.63,124.32$. 128.60. 128.92, 130.06. 140.98, 151.87. 171.25. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 73.15: \mathrm{H}, 7.37$. Found: C. 73.10 H. 7.18 .

Compound 3d: colorless oil: 82% : IR (neat) 2958.1732. $1585.1485 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.17(\mathrm{t}, J=$ $7.5 \mathrm{~Hz} .3 \mathrm{H}) .2 .58(\mathrm{dd}, J=14.5$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd} . J$ $=14.5$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}) .3 .76(\mathrm{~s} .3 \mathrm{H}) .3 .86(\mathrm{dd} . J=10.0$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$). 4.08 (q. $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$). $4.52(\mathrm{~d} . J=12.0 \mathrm{~Hz}$. $1 \mathrm{H}) .4 .60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .5 .07(\mathrm{~s} .1 \mathrm{H}) .5 .10(\mathrm{~s} .1 \mathrm{H})$. $6.65(\mathrm{~d} . J=7.5 \mathrm{~Hz} .2 \mathrm{H}) .6 .77(\mathrm{t} . J=8.0 \mathrm{~Hz} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.51,39.16 .43 .44,56.10 .60 .82,68.13$. 109.87. 114.12. 120.74. 120.87, 125.67. 140.64, 143.81. 148.73. 171.50. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}, 68.68 ; \mathrm{H}, 6.92$. Found: C. 68.46: H. 7.02 .

Compound 3e: colorless oil: 80%. IR (neat) 2924. 2248. $1489 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta 2.72$ (dd. $J=16.8$
and 9.0 Hz .1 H$) .2 .84(\mathrm{~d} . J=16.8$ and 5.4 Hz .1 H$) .3 .71(\mathrm{dd}$. $J=9.0$ and 5.4 Hz .1 H$), 4.54(\mathrm{~d} . J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) .4 .64(\mathrm{~d} . J$ $=12.6 \mathrm{~Hz}, \mathrm{lH}) .5 .33(\mathrm{~s} .1 \mathrm{H}) .5 .38(\mathrm{~s} .1 \mathrm{H}) .6 .86-6.97(\mathrm{~m}$. 2H). 7.12-7.21 (m. 2H): ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) δ $26.21,38.66,67.29,115.55,117.44,117.68 .121 .40,122.23$, 128.67. 128.90. 138.81. 154.28: FAB Mass $186\left(\mathrm{M}^{+}+\mathrm{l}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C} .77 .81: \mathrm{H}, 5.99 ;$ N. 7.56 . Found: C. 77.69: H. 6.11: N. 7.48

Compound 3f: colorless oil: 46\%. IR (neat) 2979. 1730. 1579. $1489 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 1.12(\mathrm{t}, J=$ $7.2 \mathrm{~Hz} .3 \mathrm{H}) .1 .59$ (s. 3 H). 2.79 (d. $J=14.4 \mathrm{~Hz} .1 \mathrm{H}$). 2.89 (d. $J=14.4 \mathrm{~Hz} .1 \mathrm{H}) .4 .00(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .4 .52(\mathrm{~d} . J=12.0$ $\mathrm{Hz} .1 \mathrm{H}) .4 .70(\mathrm{~d} . J=12.0 \mathrm{~Hz} .1 \mathrm{H}) .5 .13(\mathrm{~s} .1 \mathrm{H}) .5 .19(\mathrm{~s} .1 \mathrm{H})$, 6.82-7.26(m. 4H): ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 75 \mathrm{MHz}\right) \delta 14.05$. $27.44,39.13,47.26,60.16,69.35 .111 .67 .117 .16,121.13$, 126.33. 127.61. 129.91. 146.10. 154.38. 170.31: FAB Mass $247\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 73.15 ; \mathrm{H}, 7.37$. Found: C, 73.09: H, 7.21 .

Compound $4($ syn/anti $=1: 1)$: colorless oil: 40% : IR (neat) 2964, 1732. $1487 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} .300 \mathrm{MHz}$) $\delta 1.13(\mathrm{t} . J=6.9 \mathrm{~Hz} .3 \mathrm{H}), 1.17(\mathrm{t} . J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .1 .33(\mathrm{~d} . J$ $=7.2 \mathrm{~Hz} .3 \mathrm{H}) .1 .51(\mathrm{~d} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}) .3 .35-3.36(\mathrm{~m} .4 \mathrm{H})$. $3.97-4.12(\mathrm{~m} .4 \mathrm{H}) .4 .43-4.65(\mathrm{~m} .4 \mathrm{H}) .5 .05(\mathrm{~s} .1 \mathrm{H}) .5 .06(\mathrm{~s}$. $1 \mathrm{H}) .5 .17(\mathrm{~s} .1 \mathrm{H}) .5 .18(\mathrm{~s} .1 \mathrm{H}) .6 .93-7.20(\mathrm{~m} .8 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 17.48,18.84 .26 .82 .27 .82,37.93 .39 .59$, $54.60,56.08,60.35,60.68,75.01,76.00,116.80,119.78$. 121.18. 121.63. 123.94, 123.98, 127.81. 127.98. 128.00. $129.45,135.72$. 136.11, 141.76. 143.37, 157.81. 159.15. 171.72. 172.38. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: C. $73.15 ;$ H. 7.37 . Found: C. 73.29: H, 7.55.

Compound 6: colorless oil: 60%. IR (neat) 1711. 1631. $1489.1452 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 1.32(\mathrm{t}, J=$ $7.2 \mathrm{~Hz} .3 \mathrm{H}) .4 .23(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .5 .16(\mathrm{~s} .2 \mathrm{H}) .6 .53(\mathrm{~d} . J$ $=16.2 \mathrm{~Hz} .1 \mathrm{H}) .6 .92-7.54(\mathrm{~m}, 9 \mathrm{H}) .8 .08(\mathrm{~d}, J=16.2 \mathrm{~Hz}$. 1 H). We could not obtain the cyclized compound even under very dilute conditions in the reaction of compound 5 .

Compound 8: colorless oil: 38% : IR (neat) 3292. 2922. 2256. 2123. 1604. $1495 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta$ $2.55(\mathrm{t}, J=2.4 \mathrm{~Hz}, \mathrm{IH}) .3 .32(\mathrm{~d} . J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .4 .17(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d} . J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.39 (m. 2H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 22.56$. $32.78,56.01 .76 .29,77.78 .112 .15,112.56,121.92,122.08$. 130.23, 131.61. 155.20.

Compound 9: colorless oil: 42\%: IR (neat) 2958. 2924. 2256. 1603, $1495 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 3.32$ (d. $J=7.5 \mathrm{~Hz} .2 \mathrm{H}) .4 .18(\mathrm{t}, J=7.5 \mathrm{~Hz} .1 \mathrm{H}) .4 .58(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{t} . J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.43(\mathrm{~m}, 2 \mathrm{H}) .5 .99-$ $6.10(\mathrm{~m} .1 \mathrm{H}) .6 .88-6.99(\mathrm{~m} .2 \mathrm{H}) .7 .23-7.35(\mathrm{~m} .2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 22.35,32.80,68.77,111.71$, 112.59. 118.04, 121.15. 121.42. 130.15, 131.32. 132.51, 156.15

Compound 10: colorless oil: 90% : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.24(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}) .1 .84(\mathrm{~s}, 3 \mathrm{H}) .3 .46(\mathrm{~s} .2 \mathrm{H})$, $4.15(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 6.77 \cdot 7.17(\mathrm{~m} .4 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 75 \mathrm{MHz}\right) \delta 14.14 .16 .02 .33 .11,60.88,69.43$, 115.61. 121.13. 121.30, 122.99. 123.82, 128.02. 129.53, 153.27. 171.01 .

Acknowledgments. This study was financially supported by Chomam National University (2005). Spectroscopic data was obtained from the Korea Basic Science Institute. Gwangju branch.

References and Notes

1. For the synthesis and biological activities of chroman scaffoldcontaining compounds. see: (a) Martins. A.: Marquardt. U.; Kasravi. N.: Alberico. D.: Lautens. M. J. Org. (Them. 2006. 71. 4937 and further references cited therein. (b) Grutter C Alonso, E.: Chougnet, A.; Woggon, W.-D. Angew: Chem. Im. Ed. 2006, 45, 1126. (c) Bernard. A. M: Floris. C.: Frongia. A.: Piras. P. P.: Secci. F. Tetrahectron 2004. 60. 449. (d) Koyama. H.: Boueres. J. K.: Miller. D. J.: Berger. J. P.: MacNaul. K. L.: Wang. P.-r.: Ippolito. M. C.; Wright. S. D.: Agrawal. A. K.: Moller. D. E.; Sahoo. S. P. Bioorg. Med (them, 2005, 15. 3347. (e) Yasunaga, T.; Kimura, T: Naito, R.: Kontani, T.: Wanibuchi. F.: Tamashita, H.: Nomura. T.: Tsukamoto. S.-i.: Yamaguchi. T.: Mase. T. J. Med. Chem. 1998. 41. 2765
2. For the synthesis and biological activities of chromene derivatives. see: (a) Fang, Y.: Li, C. J. Org. Chem. 2006. 71. 6427. (b) Ye, L.W.: Sun, X.-L.: Zhu. C.-Y.: Tang, Y. Org. Lett. 2006, 8. 3853 . (c) Kave, P. T.: Musa. M. A.: Nocanda, X. W.: Robinson. R. S. Org. Biomol. Chem. 2003. 1. 1133. (d) Amari. G.: Armani. E.: Ghirardi. S.: Delcanale. M.: Civelli. M.: Caruso. P. L.: Galbiati. E.: Lipreri. M.: Rivara. S.: Lodola. A.: Mor. M. Bioorg. Med Chem. 2004. 12. 3763. (e) Pastine, S. J.: Youn, S. W.' Sames. D. Org. Lett. 2003. 5. 1055 (f) Parker K. A.' Mindt. T. L. Org. Lett. 2001. 3. 3875.
3. For the synthesis of exomethylenechroman derivatives. see: (a) Jana. S.; Roy. S. C. Tetrahedron Lett. 2006, 47, 5949 . (b) Booth. S. E.: Jenkins. P. R.: Swain. C. J. J. Chem. Soc., Chem. Conmum.
4. 1248. (c) Booth. S. E.: Jenkins. P. R.; Swain. C. J. J. Braz Chent. Soc. 1998. 9. 389 . (d) Booth. S. E.: Jenkins. P. R.: Swain. C. J.: Sweeney. J. B. J. Chem. Soc., Perkin Trans. 1 1994. 3499. (e) Grigg. R.: Kongkathip. N.: Konghathip. B.: Luanghamin. S.: Donads, H. A. Terahedron 2001. 57, 7965.
1. For our recent papers involving radical cyelization reactions, see: (a) Gowrisankar, S.: Lee, K. Y.; Kim. T. H.: Kim. J. N. Tetrahedron Lett. 2006. 47. 5785. (b) Gowrisankar. S.: Lee. K. Y.: Kim. J. N. Tetrahedron 2006. 62. 4052. (c) Gowrisankar. S.: Lee. K. Y.: Kimn. J. N. Tetrahtechor Lett. 2005. 46. 4859. (d) Park. D. Y.: Gowtisankar. $\mathrm{S} . ;$ Kim, J. N. Bull. Korean Chem. Soc. 2005. 26, 1440. (e) Gowrisankar, S.: Lee. H. S.: Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 2097. (f) Gowrisankar. S.; Lee. K. Y.: Kim, J. N. Bull. Korean Chem. Soc. 2006. 27.929.
2. For the cyclization of winyl radical derived from triple bond. see: (a) Hiramatsu. N.: Takahashi. N.: Noyori. R.: Mori. Y. Tetrahedron 2005, 61. 8589. (b) Shanmugam, P.: Rajasingh. P. Tetrahedron 2004. 60. 9283. (c) Shanmugam. P;, Rajasingh. P. Terohedron Lett. 2005, 46, 3369. (d) Shanmugam, P.: Rajasingh. P. Syhlett 2005. 939. (e) Ryu. I.: Ogura. S.-i.: Minakata. S.: Komatsu. M. Tetrahedron Lett. 1999. 40. 1515. (f) Lee. E.: Tae. J. S.: Chong. I. H: Park. Y. C. Tetrohedron Lett. 1994. 35. 129.
3. For the cyclization of vinyl radical derived from haloalkene. see: (a) Lin, H: Schall, A.: Reiser, O. Synlett 2005. 2603. (b) Padwa. A.; Rashatasakhon, P;, Ozdemir. A. D.; Willis, J. J. Org. Chem. 2005. 70. 519. (c) Sha. C.-K.: Zhan. C.-K.: Wang. F.-S. Org. Letf. 2000. 2. 2011.
4. We are currently studying the unusual reduction and the results will be published in due course.
5. DiBiase, S. A.: Lipisko. B. A.: Hag, A.: Wolak, R. A.: Gokel. G. W. J. Org Chem $1979, f+4640$.
6. Yadav. J. S.: Reddy, B. V. S.: Basak, A. K.: Visali, B.: Narsaiah. A. V.: Nagaiah. K. Eur. J. Org Chem. 2004. 546.
