Synthesis of Oxazolidinone Phosphonate Derivatives, Part II

Jae-Min Hwang, Sung-Ho Yeom, and Kang-Yeoun Jung*
Department of Environmental \& Applied Chemistry, College of Engineering, Kangnung National Unversity. Kangnung 210-702, Korea. "E-mail: kyjungôkangning ac. kr
Recenved February 9. 2007

Abstract

Several oxazolidinones. a new class of synthetic antibacterial agents, have shown biological activity against multidrug-resistant gram positive organisms such as staphylococci, streptococci. and enterococci. Previous results of our studies with benzoxazolidinone phosphonate derivatives have demonstrated very low antibacterial activity. In the course of our studies directed towards the discovery of noble antibacterial agents. we have synthesized several new derivatives of oxazolidinone phosphonates prepared efficiently from commercially available amino acids. These compounds are tested for in vitro antibacterial activity and one of the compounds showed promising results allowing us to pursue further studies.

Key Words: Oxazolidinone. Oxazolidinone phosphonates. Antibacterial agent

Introduction

Oxazolidinones are a promising new class of totally synthetic antibacterial agents active against numerous Gram-positive organisms. including methicillin-resistant Staphlococcts catreus (MRSA). vancomycin-resistant enterococci (VRE). penicillin- and cephalosporin-resistant Streptococcus pneumonice. ${ }^{1}$ While they share with other antimicrobials as ribosomal target, the oxazolidinones bind in a distinct region of 23 S rRNA near the peptidyl transferase center and do not exhibit significant cross-resistance with the existing classes of antibacterials. ${ }^{2}$

Linezolid, ${ }^{3}$ 1. (Zyvox ${ }^{\text {TM }}$. Pharmacia/Pfizer) is the first compound commercialized world wide from the oxazolidinone class of antibacterials to treat multi-drug resistant Gram-positive infections.

Linezolid 1
However, resistance against linezolid has already started to develop in Enterococcuts faecium ${ }^{+5}$ and more alamingly. in S. curfeus. giving rise to linezolid-resistant MRSA strains. ${ }^{6}$ Therefore. there is an urgent need for the further exploration of features of the oxazolidinone class and the synthesis of new compounds, which are more potent and less prone to resistance development.

In our previous work. ${ }^{7}$ we described the synthesis of variously substituted benzoxazolidinone derivatives using pentacovalent oxaphosphorane chemistry followed by reductive amination with aromatic amine of oxazolidinones. ${ }^{8}$ None of the synthetic benzoxazolidinone derivatives showed better biological activity than commercially available linezolid. As part of ou ongoing efforts to improve biological
activity. therefore, we have now designed and synthesized a range of oxazolidinone phosphonate derivatives from commercially available amino acids.

Results and Discussion

To date, many groups have reported the synthesis and biological activity of novel oxazolidinones since a few of synthetic oxazolidinone derivatives had shown antibacterial activity. In most studies. they used the reactions between oxirane derivatives and variously substituted amines in order to synthesize various oxazolidinone derivatives. ${ }^{9}$

In our work. however. we used L-serine and L-threonine as a starting material for the synthesis of oxazolidinone derivatives. which allows us to synthesize oxazolidine moiety more efficiently as shown in Scheme l.

Two core compounds. $4-(R)$-hy droxy lmethyloxazolidin-2one $(\mathbf{t a})^{\text {li }}$ and $4-(R)$-hydroxyimethyl-5- (R)-methyloxazo-lidin-2-one ($\mathbf{+} \mathbf{b}) .{ }^{11}$ were prepared from commercially available L-serine and L-threonine in four steps. respectively. Protection of amino group with CbzCl followed by esterification under the presence of catalytic amount of TsOH gave the corresponding compounds $\mathbf{2 a - b}$, and then reduction of 2a-b and subsequent cyclization of 3a-b afforded the desired oxazolidinone compounds, ta-b in reasonable yields.

Selective protection of hydroxyl groups of ta and $\mathbf{4 b}$ with TBSCl gave the corresponding TBS ethers $\mathbf{5 a}$ and $\mathbf{5}$ b in 97% and 82% yields. respectively. Substitution of $\mathbf{5 a}$ and $\mathbf{5 b}$ with 2,4-difluoronitrobenzene (1: fluoronitrobenzene substituent, see Scheme 1 for the structure) or 2 -chloro-5nitropyridine (2 : nitropyridine substituent) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ gave the N-substituted compounds. $6 \mathbf{a 1}$ and $6 a 2$ from 5a, 6 b 1 and $\mathbf{6 b 2}$ from 5b. which were followed by deprotection of TBS group with TBAF gave N -substituted-5-hydroxyloxazolidinone derivatives 7a1-a2 and 7b1-b2 in 70-85\% y yelds.

Oxazolidinone phosphonate products $8 \mathbf{a}$ and $\mathbf{8 b}$ were obtained ($40-60 \%$ yields) from the reaction of 7 a and 7 b

Scheme 1. Synthesis of Oxazolidinone Phosphonic Acids. Reagents: i. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Cbz}-\mathrm{Cl}$, ii p - $\mathrm{TsOH}, \mathrm{MeOH}$, iii. NaBH_{\perp}, THF, iv. f BuOK, THF, v. TBSCl, Imidazole, vi. R'X, NaH, vii. TBAF, THF, viii. $\mathrm{T}_{4} \mathrm{OCH} \mathrm{H}_{2} \mathrm{PO}(\mathrm{OEt})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, ix. $\mathrm{H}_{2}, \mathrm{HCO}_{2} \mathrm{NH}_{4}$, x. TMSBr, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
with $\mathrm{TfOCH}_{-} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$ in the presence of NaH at room temperature.

Catalytic hydrogenation of nitro groups on the aromatic ring of 8a1 and 801 with ammonium formate in the presence of $1.5 \mathrm{~mol} \%$ of Pd / C in THF/methanol at room temperature gave N-4-amino-3-fluorophenyl derivatives 9 a 3 ($\mathrm{R}=\mathrm{H}$. 92% yield) and $9 \mathbf{0} 3$ ($\mathrm{R}=\mathrm{Me} .78 \%$ yield). Under the same conditions, $8 \mathbf{a} 2$ and 8 b 2 were converted into N -5-aminopyridyl derivatives $9 \mathrm{at}(\mathrm{R}=\mathrm{H}, 50 \%$ yield $)$ and 9b+ $(\mathrm{R}=$ $\mathrm{CH}_{3} .83 \%$ yield). Treatment of diethyl phosphonate groups of 9 a and 9 b with TMSBr gave the corresponding oxazolidinone phosphonic acids $10 a$ and $10 b$ in $80-92 \%$ yields.
In summary, we have reported that a new series of N substituted oxazolidinone phosphonic acid derivatives. which are expected to show improved antibacterial activity. were easily prepared from the commercially available amino acids. The biological activity of the compounds reported here will be studied and reported in the future.

Experimental Section

General. Dichloromethane and $E t_{3} \mathrm{~N}$ were distilled from CaH_{2} immediately prior to use. All non-aqueous reactions were conducted in flame-dried glassware. under an atmosphere of argon. with magnetic stirring. NMR spectra were obtained on a JOEL Lamda 300 spectrometer and recorded at 300 MHz for ${ }^{1} \mathrm{H}\left(75 \mathrm{MHz}\right.$ for $\left.{ }^{13} \mathrm{C}\right)$ with CDCl_{3} as solvent and $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, 77.0 \mathrm{ppnr}\right)$ as intental standards unless otherwise noted. All ${ }^{31} \mathrm{P}$ NMR chemical shifts are reported in ppn relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external standard). FT-IR spectra were recorded on a JASCO FR-IR 460 series. High resolution $F A B$ mass spectra were obtained
from the Hybrid LC-Quarapole-TOF Tandem Mass Spectrometer at the Kangnung National University.
+-(R)-(tert-Butyldimethylsilyloxymethyl)-2-oxazolidinone (5a). A flame-dried 250 mL round-bottom flask under argon atmosphere was charged with oxazolidinone ta (2.17 g. 23.16 mmol). activated imidazole (3.47 g .50 .95 mmol , 2.2 equiv.), and anhydrous DMF (60 mL). After the solution was stirred for 5 min at room temperature, ter-butyldimethylsilylchloride ($4.54 \mathrm{~g}, 30.11 \mathrm{mmol}, 1.3$ equiv.) was added quickly at the same temperature. This reaction mixture was allowed to stir for 5 lirs, and then quenched with distilled water. This aqueous mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the crude oil was purified by flash column chromatography with a gradient solvent system using methylene chloride and methanol to give the desired product $5 \mathrm{a}(5.21 \mathrm{~g} .22 .55 \mathrm{mmol} .97 \%):{ }^{1} \mathrm{H}$ NMR $\delta 6.47$ (s. 1H), 4.40 (t. $J=8.7 \mathrm{~Hz} . \mathrm{lH}), 4.17$ (dd. $J=8.8,4.8 \mathrm{~Hz} . \mathrm{lH}), 3.89(\mathrm{~m}$, $1 \mathrm{H}) .3 .58(\mathrm{~d} . J=5.3 \mathrm{~Hz}, 2 \mathrm{H}) .0 .85(\mathrm{~s} .9 \mathrm{H}), 0.03(\mathrm{~s} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 160.22,67.17,64.54 .53 .63,25.70,18.11 .-5.53$ (d, $J=1.3 \mathrm{~Hz}$); IR $\left(\mathrm{cm}^{-1}\right): 3441.3,2928.3 .2249 .5,1730.8$ HRFABMS calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+1)^{-}$: 232.1291, found: 232.1295.

4-(R)-(tert-Butyldimethylsilyloxymethyl)-5-(R)-methyl-2-oxazolidinone (5b). The desired product 5b (2 g .8 .16 munol. 82%) was prepared from the oxazolidinone $\mathbf{4 b}$ (1.32 g. 10.07 mmol) following the same procedure as the compound 5a: ${ }^{1} \mathrm{H}$ NMR $\delta 6.70(\mathrm{bs} .1 \mathrm{H}), 4.42(\mathrm{~m} .1 \mathrm{H}), 3.56(\mathrm{~m}$, $2 \mathrm{H}) .3 .42(\mathrm{~m}, 1 \mathrm{H}) .1 .38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.01(\mathrm{~s} .6 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR $\delta 159.71 .76 .18,64.39 .60 .43,25.65$ (d. $J=6.2 \mathrm{~Hz}$) $20.75 .18 .06 .-5.56(\mathrm{~d}, J=2.5 \mathrm{~Hz}$); IR
$\left(\mathrm{cm}^{-1}\right): 3434.6 .2293 .9,2257.3$. 1635.3. 1037.5. HRFABMS calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+1)^{+}: 246.1552$. found: 246.1551 .
$\boldsymbol{4 -}(R)$-(tert-Butyldimethylsilyloxymethyl)- N -(3-fluoro-4-nitrophenyl)-2-oxazolidinone (6a1). A flame-dried 100 mL round-bottom flask under argon was charged with oxazolidinone 5 a ($1.11 \mathrm{~g}, 4.81 \mathrm{mmol}$) and activated $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.99 g. 7.22 mmol. 1.5 equiv.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (20 mL). After the solution was stirred for 5 min at room temperature. 3, 4 -difluoronitrobenzene $(0.64 \mathrm{~mL}, 5.77 \mathrm{nmol}$. 1.2 equiv) was added quickly. This reaction mixture was refluxed for 1 hr , and then quenched with distilled water and anmonium chloride, respectively. The aqueous misture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{-} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the crude oil was purified by flash column chromatography with a gradient solvent system of methylene chloride and methanol to give the desired product $6 \mathrm{a} 1(1.37 \mathrm{~g}, 3.7 \mathrm{mmol}, 77 \%):{ }^{1} \mathrm{H}$ NMR $\delta 8.03$ (m. $2 \mathrm{H}), 7.88$ (dd, $J=8.9,7.7 \mathrm{~Hz} .1 \mathrm{H}), 4.6 \mathrm{I}(\mathrm{m} .2 \mathrm{H}), 4.35$ (dd. J $=7.9 .4 .0 \mathrm{~Hz}, 1 \mathrm{H}) .3 .57(\mathrm{~d}, J=3.2 \mathrm{~Hz} .2 \mathrm{H}) .0 .97(\mathrm{~s}, 9 \mathrm{H})$. $-0.07(\mathrm{~s}, 3 \mathrm{H}) .-0.14(\mathrm{~s}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 155.76 .155 .24(\mathrm{~d}$. $\left.J_{C-\mathrm{F}}=252.0 \mathrm{~Hz}\right) .145 .65\left(\mathrm{~d}, J_{C-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 130.79\left(\mathrm{~d} . J_{C-\mathrm{F}}=\right.$ $10.2 \mathrm{~Hz}), 128.0\left(\mathrm{~d}, J_{C-\mathrm{F}}=2.2 \mathrm{~Hz}\right), 119.80\left(\mathrm{~d} . J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right)$. $112.39\left(\mathrm{~d} . J_{\mathrm{C} . \mathrm{F}}=25.0 \mathrm{~Hz}\right), 64.92 .61 .53 .57 .60(\mathrm{~d} . J=6.5$ Hz), 25.42. 17.83. -5.93 (d. $J=1.0 \mathrm{~Hz}$); $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) ; 3504.0$. 2930.3, 2857.9, 1768.4, 1531.2. 1346.0. HRFABMS caled for $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}=\mathrm{FSi}(\mathrm{M}+1)^{+}: 371.1360$. found: 371.1361 .

4 -(R)-(tert-Butyldimethylsilyloxymethyl)- N -(3-fluoro-4-nitrophenyl)-5(R)-methyl-2-oxazolidinone (6b1). The desired compound 6b1 ($1.35 \mathrm{~g} .3 .6 \mathrm{nmmol} .75 \%$) was prepared from oxazolidinone $\mathbf{5 b}$ (1.18 g .4 .81 nmol) following the same procedure as the compound 6a1: ${ }^{1} \mathrm{H}$ NMR $\delta 7.98$ $(\mathrm{m}, 3 \mathrm{H}), 4.63(\mathrm{~m} . \mathrm{lH}) .4 .17(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d} . J=3.3 \mathrm{~Hz}$. $2 \mathrm{H}), 1.57(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .0 .81(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H})$. $-0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 155.28 .155 .30(\mathrm{~d}, J=251.7 \mathrm{~Hz})$. $145.70\left(\mathrm{~d} . J_{C-\mathrm{F}}=8.0 \mathrm{~Hz}\right) .131 .0\left(\mathrm{~d} . J_{C-\mathrm{F}}=10.5 \mathrm{~Hz}\right), 128.20$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right) .119 .90\left(\mathrm{~d} . J_{C-\mathrm{F}}=3.1 \mathrm{~Hz}\right) .112 .50\left(\mathrm{~d} . J_{\mathrm{C}-\mathrm{F}}=\right.$ 25.3 Hz). 73.60 .64 .41 (d. $J=6.2 \mathrm{~Hz}) .61 .30 .25 .51$ (d. $J=$ 8.0 Hz). 20.61, 17.90. $-5.91(\mathrm{~d} . J=2.5 \mathrm{~Hz}):$ IR $\left(\mathrm{cm}^{-1}\right)$: $3425.0 .2930 .3,2858.0,1766.5,1531.2,1346.1$: HRFABMS calcd for $\mathrm{C}_{17} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{FSi}(\mathrm{M}+\mathrm{l})^{+}: 385.1517$, found: 385.1515 .
N-(3-Fluoro-4-nitrophenyl)-4-(R)-hydroxymethyl-2oxazolidinone (7a1). To a solution of oxazolidinone 6al (0.97 g .2 .62 mmol) in freshly distilled $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added tetrabutylammoniumfloride ($1.03 \mathrm{mLL}, 3.54 \mathrm{mmol}$. 1.35 equiv.) quickly. The reaction mixture was stirred for 5 hrs and quenched with distilled water followed by aqueous ammonium chloride. This aqueous mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure. the crude oil was purified by flash colunn chromatography with a gradient solvent system using methylene chloride and methanol to give the desired product $7 \mathrm{al}(0.47 \mathrm{~g} .1 .84 \mathrm{mmol} .70 \%):{ }^{1} \mathrm{H}$ NMR $\delta 8.03(\mathrm{~m}, 2 \mathrm{H})$. $7.84(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~m}, \mathrm{IH}) .3 .62(\mathrm{~s}$. $2 \mathrm{H}) .3 .09(\mathrm{~s} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 156.23 .155 .70\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{F}}=\right.$ $252.6 \mathrm{~Hz}), 146.09\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{F}}=8.3 \mathrm{~Hz}\right) .130 .27\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{F}}=10.8\right.$
$\mathrm{Hz}), 128.53\left(\mathrm{~d}, J_{\mathrm{C} . \mathrm{F}}=2.2 \mathrm{~Hz}\right) .119 .97\left(\mathrm{~d} . J_{C-\mathrm{F}}=3.5 \mathrm{~Hz}\right)$, $112.48\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.4 \mathrm{~Hz}\right), 65.14 .60 .48,57.81(\mathrm{~d} . J=5.9$ Hz): IR $\left(\mathrm{cm}^{-1}\right)$: 3426.8 . 1747.1 . $1530.2,1410.6,1349.9$, 1205.2, 1141.6: HRFABMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~F}(\mathrm{M}+1)^{-}$: 257.0495 , found: 257.0495 .
N-(3-Fluoro-4-nitrophenyl)-t-(R)-hydroxymethyl-5(R)-methyl-2-oxazolidinone (7b1). The procedure was the same as the preparation of compound 7a1. Oxazolidinone $6 \mathrm{~b} 1(0.82 \mathrm{~g}, 2.14 \mathrm{mmol})$ was converted to the desired product $7 \mathrm{~b} 1(0.35 \mathrm{~g} .1 .34 \mathrm{mmol} .65 \%)$: ${ }^{1} \mathrm{H}$ NMR $\delta 8.07$ (m, $2 \mathrm{H}) .7 .85$ (dd. $J=8.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m} .1 \mathrm{H}) .4 .17(\mathrm{~m}$, $1 \mathrm{H}) .3 .68$ (d. $J=3.5 \mathrm{~Hz} .2 \mathrm{H}) .1 .59(\mathrm{~d} . J=6.2 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 155.6\left(\mathrm{~d} . J_{C-\mathrm{F}}=251.6 \mathrm{~Hz}\right), 155.36,146.11\left(\mathrm{~d} . J_{\mathrm{C}-\mathrm{F}}=\right.$ $10.5 \mathrm{~Hz}) .130 .66\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 128.55\left(\mathrm{~d}, J_{\mathrm{C} . \mathrm{F}}=2.4\right.$ $\mathrm{Hz}), 120.16\left(\mathrm{~d} . J_{C-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 112.65\left(\mathrm{~d} . J_{C-F}=25.4 \mathrm{~Hz}\right)$, 73.62. $64.42(\mathrm{~d}, J=5.6 \mathrm{~Hz}) .60 .7 .20 .54$: IR $\left(\mathrm{cm}^{-1}\right) ; 3398.9$, 2939.0, 1735.6. 1528.3. 1348.0, 1077.1; HRFABMS calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~F}(\mathrm{M}+\mathrm{l})^{+}$: 271.0652 . found: 271.0650 .
[N -(3-Fluoro-\&-nitrophenyl)-2-ox0-oxazolidin-+-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester (8a1). To a suspension of $\mathrm{NaH}(0.88 \mathrm{~g} .36 .8 \mathrm{mmol} .20$ equiv.) in freshly distilled THF (20 mL) was added hydroxyoxazolidinone $7 \mathrm{a} 1(0.47 \mathrm{~g}, 1.84 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min . the solution was treated with (diethoxyphosphono)methyltriflate (0.68 g .3 .05 mmol .1 .66 equiv.) quickly in anlydrous THF $(10 \mathrm{~mL})$. This reaction mixture was allowed to stir for 5 hrs at the same temperature and quenched with distilled water. This aqueous mixture was extracted with $\mathrm{CH}_{3} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure. the crude oil was purified by flash column chromatography with a gradient solvent system using methylene chloride and methanol to afford pure compound $8 \mathrm{a} 1(0.45 \mathrm{~g} .1 .11 \mathrm{mmol}$, 60%): ${ }^{1} \mathrm{H}$ NMR $\delta 8.07(\mathrm{~m}, 2 \mathrm{H}) .7 .89(\mathrm{dd}, J=8.8,7.7 \mathrm{~Hz}$. $1 \mathrm{H}) .4 .69(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=8.3 .4 .3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}$, $4 \mathrm{H}) .3 .66(\mathrm{~m} .4 \mathrm{H}) .1 .31(\mathrm{~m}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 155.43\left(\mathrm{~d} . J_{C-\mathrm{F}}\right.$ $=252.9 \mathrm{~Hz}) .155 .26,145.76\left(\mathrm{~d} . J_{C-\mathrm{F}}=8.0 \mathrm{~Hz}\right) .130 .15(\mathrm{~d}$, $\left.J_{\mathrm{C} \cdot \mathrm{F}}=10.5 \mathrm{~Hz}\right) .128 .25\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{F}}=2.5 \mathrm{~Hz}\right) .119 .66\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{F}}=\right.$ $3.7 \mathrm{~Hz}) .112 .14\left(\mathrm{~d} . J_{C \cdot \mathrm{~F}}=25.4 \mathrm{~Hz}\right), 70.90(\mathrm{~d}, J=9.2 \mathrm{~Hz})$, 65.47 (d. $J=96.8 \mathrm{~Hz}$). 63.92. 62.15 (dd. $J=9.3 .6 .2 \mathrm{~Hz}$), $55.90(\mathrm{~d} . J=5.6 \mathrm{~Hz}) .16 .07$ (dd. $J=5.6 .1 .9 \mathrm{~Hz}$): ${ }^{31} \mathrm{P}$ NMR δ 19.65: IR $\left(\mathrm{cm}^{-1}\right): 3474.1 .2985 .2,2894.6 .1762 .6,1530.2$, 1348.9, 1237.1. 1026.9. HRFABMS calcd for $\mathrm{C}_{15} \mathrm{H}_{215} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PF}$ $(\mathrm{M}+1)^{-}: 407.0941$, found: 407.0943 .
[N-(3-Fluoro-t-nitrophenyl)-5-(R)-methyl-2-oxo-oxa-zolidin-4-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester (8 b 1). The procedure was the same as the preparation of compound 8a1. Hydroxyoxazolidinone 7b1 (0.3 g .1 .15 $\mathrm{mmol})$ was converted to the desired product $8 \mathrm{bl}(0.18 \mathrm{~g}$. $0.44 \mathrm{mmol} .38 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 7.93(\mathrm{~m}, \mathrm{lH}), 7.84$ (dd, $J=$ $11.7 .2 .6 \mathrm{~Hz}, \mathrm{IH}), 6.65(\mathrm{t} . J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H})$, $4.12(\mathrm{~m} .4 \mathrm{H}) .3 .79(\mathrm{~m} .4 \mathrm{H}) .1 .31(\mathrm{td} . J=7.0 .5 .3 \mathrm{~Hz} .6 \mathrm{H})$. 1.22 (d. $J=6.6 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 151.57 .149 .05(\mathrm{~d} . J=$ $240.6 \mathrm{~Hz}) .142 .50\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{F}}=11.1 \mathrm{~Hz}\right), 136.39\left(\mathrm{~d} . J_{\mathrm{C} \cdot \mathrm{F}}=8.0\right.$ $\mathrm{Hz}), 122.20\left(\mathrm{~d} . J_{\mathrm{C} \cdot \mathrm{F}}=2.5 \mathrm{~Hz}\right) .111 .03\left(\mathrm{~d} . J_{\mathrm{C} \cdot \mathrm{F}}=22.9 \mathrm{~Hz}\right)$, $109.27\left(\mathrm{~d} . J_{\mathrm{C} . \mathrm{F}}=3.7 \mathrm{~Hz}\right), 72.11(\mathrm{~d} . J=6.2 \mathrm{~Hz}), 66.19 .64 .73$ $(\mathrm{d} . J=111.1 \mathrm{~Hz}), 62.60(\mathrm{dd}, J=6.8 .4 .9 \mathrm{~Hz}), 56.48,19.68$,
$16.35(\mathrm{~d} . J=5.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\delta 21.42$: $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3388.3$. 2923.6, 2853.2, 1743.3, 1532.2. 1026.9. HRFABMS calcd for $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PF}(\mathrm{M}+1)^{-}: 421.1098$, found: 421.1096 .
[N-(t-Amino-3-fluorophenyl)-2-0xo-oxazolidin-4-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester (9a3). A solution of oxazolidinone $8 \mathrm{a} 1(0.29 \mathrm{~g} .0 .71 \mathrm{mmol})$ in anhydrous THF: $\mathrm{MeOH}(35: 65,100 \mathrm{~mL}$) was treated with anmoniumformate ($0.18 \mathrm{~g}, 2.86 \mathrm{mmol} .4$ equiv.) at room temperature. After being bubbled for 30 min with argon. $\mathrm{Pd} /$ C (catalyst $1.09 \mathrm{mg}, 0.011 \mathrm{mmol} .0 .015$ equiv.) was added quickly and stirred. After 3 lurs, the reaction mixture was filtered and concentrated in vacto to afford the crude product. This crude oil was purified by flash column chromatography with a gradient solvent system using ethyl acetate and methanol to give the desired product $9 \mathrm{a} 3(0.25 \mathrm{~g} .0 .66$ mmol. 92%): ${ }^{1} \mathrm{H}$ NMR $\delta 7.06$ (t. $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.38(\mathrm{~m}$. $2 \mathrm{H}), 4.53(\mathrm{t}, J=8.8 \mathrm{~Hz} . \mathrm{H}) .4 .39$ (dd. $J=8.6,5.3 \mathrm{~Hz} . \mathrm{IH})$. $4.18(\mathrm{~m} .7 \mathrm{H}) .3 .74(\mathrm{~m}, 2 \mathrm{H}) .3 .57(\mathrm{~m} .2 \mathrm{H}) .1 .32(\mathrm{~m}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 158.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.5 \mathrm{~Hz}\right), 157.02 .148 .67\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=10.5 \mathrm{~Hz}) .130 .19\left(\mathrm{~d} . J_{C-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 112.21\left(\mathrm{~d}, J_{C-\mathrm{F}}=12.3\right.$ $\mathrm{Hz}) .110 .65\left(\mathrm{~d}, J_{C-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 102.03\left(\mathrm{~d} . J_{C-\mathrm{F}}=22.9 \mathrm{~Hz}\right)$. $71.14(\mathrm{~d}, J=10.5 \mathrm{~Hz}) .65 .70(\mathrm{~d}, J=113.5 \mathrm{~Hz}) .64 .26 .62 .42$ (dd. $J=11.7 .6 .5 \mathrm{~Hz}), 56.91(\mathrm{~d} . J=1.8 \mathrm{~Hz}), 16.26(\mathrm{dd}, J=$ $5.6 .1 .9 \mathrm{~Hz}),{ }^{31} \mathrm{P}$ NMR $\delta 19.96$; IR $\left(\mathrm{cm}^{-1}\right): 3460.6 .3451 .6$. 3244.6. 2984.3, 1747.1, 1523.4. 1239.0. 1027.87, HRFABMS calcd for $\mathrm{C}_{15} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PF}(\mathrm{M}+\mathrm{I})^{+}: 377.1200$, found: 377.1201.
[\mathbf{N}-(4-Amino-3-fluorophenyl)-5-(R)-methyl-2-oxo-oxa-zolidin-4-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester (9133). The procedure was the same as the preparation of compound 9 a 3 . Oxazolidinone $\mathbf{8 b 1}(0.25 \mathrm{~g}, 0.59 \mathrm{mmol})$ was converted to 9 b 3 ($0.17 \mathrm{~g}, 0.46 \mathrm{mmol}, 78 \%$): ${ }^{1} \mathrm{H}$ NMR δ $9.16(\mathrm{dd} . J=2.3,1.00 \mathrm{~Hz} .1 \mathrm{H}) .8 .47(\mathrm{~m} .2 \mathrm{H}) .4 .84(\mathrm{~m}, 1 \mathrm{H})$. $4.59(\mathrm{~m}, 1 \mathrm{H}) .4 .07(\mathrm{~m} .8 \mathrm{H}) .3 .79(\mathrm{~d} . J=7.7 \mathrm{~Hz} .2 \mathrm{H}) .1 .52(\mathrm{~d}$. $J=6.4 \mathrm{~Hz} .3 \mathrm{H}), 1.32(\mathrm{dt}, J=10.4 .8 .5 \mathrm{~Hz} .6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $156.92(\mathrm{~d} . J=245.3 \mathrm{~Hz})$, 154.37. $144.19(\mathrm{~d} . J=18.5 \mathrm{~Hz})$. $140.01,133.25,112.60 .111 .33 .73 .68 .70 .67(\mathrm{~d} . J=8.6 \mathrm{~Hz})$. $65.40(\mathrm{~d}, J=164.7 \mathrm{~Hz}) .62 .36(\mathrm{dd}, J=13.2,6.5 \mathrm{~Hz}) .60 .69$. 20.58 (d. $J=36.7 \mathrm{~Hz}) .16 .29(\mathrm{dd} . J=8.6 .3 .7 \mathrm{~Hz}):{ }^{31} \mathrm{P}$ NMR $\delta 20.00$: IR $\left(\mathrm{cm}^{-1}\right): 3466.41 .2984 .3,2938.98$, 1768.4 . 1597.73. 1345.11. 1117.55: HRFABMS calcd for $\mathrm{C}_{16} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PF}$ $(\mathrm{M}+1)^{+}: 391.1357$. found: 391.1350 .
[N -(4-Amino-3-fluorophenyl)-2-0xo-oxazolidin-4-(R)-yl-methoxymethyl]-phosphonic acid (10a3). To a solution of phosphonated oxazolidinone $9 \mathrm{a} 3(0.13 \mathrm{~g} .0 .35 \mathrm{mmol})$ in distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added freshly distilled TMSBr ($1.36 \mathrm{~mL}, 10.5 \mathrm{mmol}, 30 \mathrm{eq}$). After being stirred for 24 hrs at room temperature the reaction was diluted with MeOH . This mixture was concentrated in vacuo and washed with methylene chloride and ether several times to give the desired product $1003(0.10 \mathrm{~g} .0 .31 \mathrm{mmol}, 88.5 \%)$: ${ }^{1} \mathrm{H}$ NMR $\delta 7.43(\mathrm{t} . J=8.6 \mathrm{~Hz}, \mathrm{IH}) .7 .01(\mathrm{~m}, 2 \mathrm{H}) .4 .58(\mathrm{~m}, \mathrm{IH}), 4.33$ $(\mathrm{m}, 2 \mathrm{H}) .3 .53(\mathrm{~m}, 4 \mathrm{H}), 3.17(\mathrm{~s} .2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 158.27(\mathrm{~d}$. $J_{\text {C.F }}=246.2 \mathrm{~Hz}$). $156.31 .141 .86\left(\mathrm{~d} . J_{\text {C.F }}=9.2 \mathrm{~Hz}\right), 130.81$ $\left(\mathrm{d}, J_{\mathrm{C} . \mathrm{F}}=2.5 \mathrm{~Hz}\right), 116.9 \mathrm{I}\left(\mathrm{d} . J_{\mathrm{C} \cdot \mathrm{F}}=12.4 \mathrm{~Hz}\right), 114.75 .106 .03$ $\left(\mathrm{d}, J_{\mathrm{C} \cdot \mathrm{F}}=22.2 \mathrm{~Hz}\right) .70 .38(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 66.81(\mathrm{~d} . J=158.0$ Hz). 65.08, 56.77: ${ }^{31} \mathrm{P}$ NMR δ 16.37: IR $\left(\mathrm{cm}^{-1}\right): 3433.6$. 2252.4. 1651.7. 1026.9. 824.4. 762.7. HRFABMS caled for

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PF}(\mathrm{M}+\mathrm{I})^{+}: 321.0574$. found: 321.0576

[N -(4-Amino-3-fluorophenyl)-5-(R)-methyl-2-oxo-oxa-zolidin-t-(R)-yl-methoxymethyl]-phosphonic acid (10b3). The procedure was the same as the preparation of compound 10a3. Phosphonated oxazolidinone $9 \mathrm{~b} 3(0.2 \mathrm{~g}, 0.51 \mathrm{mmol})$ was converted to the desired product $10 \mathrm{~b} 3(0.13 \mathrm{~g}, 0.39$ mmol. 76%): ${ }^{1} \mathrm{H}$ NMR $\delta 9.22$ (bs. lH), 8.59 (d. $J=7.9 \mathrm{~Hz}$. 1H). $8.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m} .6 \mathrm{H}) .1 .53(\mathrm{~d}, J=5.9$ Hz. 3 H): ${ }^{13} \mathrm{C}$ NMR $\delta 156.28(\mathrm{~d}, J=237.5 \mathrm{~Hz}), 155.65$. 145.07, 140.94. 134.19, 113.34, 112.21. 74.83. 71.38. 61.60, 49.59. 21.09; ${ }^{31} \mathrm{P}$ NMR $\delta 15.62$; IR $\left(\mathrm{cm}^{-1}\right): 3433.64,2254.38$, 2127.1, 1650.77. 1349.93. 1032.69; HRFABMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PF}(\mathrm{M}+1)^{-}: 335.0730$, found: 335.0738 .
+-(R)-(tert-Butyldimethylsilyloxymethyl)- N-(5-nitro-pyridin-2-yl)-2-oxazolidinone (6a2). The procedure was the same as the preparation of compound 6a1. Reaction of oxazolidinone 5 a (1.5 g .6 .49 nmol) and 2 -chloro-5-nitropyridine ($1.5 \mathrm{~g} .9 .74 \mathrm{mmol}, 1.5$ equiv.) gave the desired product $6 \mathrm{a} 2(2.03 \mathrm{~g} .5 .75 \mathrm{mmol} .89 \%)$: ${ }^{.} \mathrm{H}$ NMR $\delta 9.14$ (t. J $=1.7 \mathrm{~Hz}, \mathrm{lH}), 8.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~m} .1 \mathrm{H}) .4 .51(\mathrm{t}$, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03$ (dd. $J=10.6,4.2 \mathrm{~Hz} .1 \mathrm{H}) .3 .82(\mathrm{dd} . J=$ $10.6 .2 .4 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s} .9 \mathrm{H}) .-0.02(\mathrm{~s} .3 \mathrm{H}) .-0.13$ (s. 3 H$)$: ${ }^{13} \mathrm{C}$ NMR $\delta 154.51,154.43,144.16 .139 .92 .133 .31,112.39$. 65.30. 61.34. 56.28. 25.53. 17.93. -5.7 (d. $J=4.4 \mathrm{~Hz}$); IR $\left(\mathrm{cm}^{-1}\right)$: 2928.3. 1769.3, 1596.7, 1473.3. 1420, 1340.2. 1199.5; HRFABMS calcd for $\mathrm{C}_{15} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1)^{+}: 354.1407$, found: 354.1409.

4-(R)-(tert-Butyldimethylsilyloxymethyl)-5(R)-methylN -(5-nitro-pyridin-2-yl)-2-oxazolidinone (6b2). The procedure was the same as the preparation of compound 6a1. Reaction of oxazolidinone $\mathbf{5 b}(1.18 \mathrm{~g}, 4.81 \mathrm{mmol})$ and $2-$ chloro-5-nitropyridine ($0.92 \mathrm{~g}, 5.77 \mathrm{mmol}, 1.2$ equiv.) gave the desired product $6 \mathbf{b 2}(1.5 \mathrm{~g}, 4.08 \mathrm{mmol} .85 \%) .{ }^{1} \mathrm{H}$ NMR δ $9.20(\mathrm{~m} . \mathrm{lH}) .8 .47(\mathrm{~d}, J=1.6 \mathrm{~Hz} .2 \mathrm{H}), 4.47(\mathrm{~m} .1 \mathrm{H}), 3.92$ $(\mathrm{m}, 2 \mathrm{H}) .1 .50(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s} .9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$, -0.11 (s. 3H): ${ }^{13} \mathrm{C}$ NMR $\delta 154.80$. 154.10. 144.19. 140.01. $133.45(\mathrm{~d} . J=17.9 \mathrm{~Hz}) .112 .76 .73 .77 .62 .63,61.17 .25 .60$. 21.08. 18.00. $-5.62(\mathrm{~d} . J=8.0 \mathrm{~Hz}): \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2928.4,2856.1$, 1753.0. 1514.8. 1203.4. HRFABMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}$ $(\mathrm{M}+1)^{-}: 368.1546$, found: 368.1545
+-(R)-Hydroxymethyl- N-(5-nitro-pyridin-2-yl)-2-oxalzolidinone (7a2). The procedure was the same as the preparation of compound 7a1. Oxazolidinone $6 a 2(2.03 \mathrm{~g}$. 5.75 mmol) was converted to the desired product 7 a 2 (1.12 g. $4.69 \mathrm{mmol} .82 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 9.17$ (dd. $J=2.3,1.0 \mathrm{~Hz}$, $\mathrm{IH}) .8 .49(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~m} . \mathrm{HH}), 4.58(\mathrm{t} . J=8.8 \mathrm{~Hz}, \mathrm{lH})$, $4.48(\mathrm{dd} . J=8.9 .4 .0 \mathrm{~Hz} .1 \mathrm{H}) .4 .03(\mathrm{~m} .2 \mathrm{H}) .2 .76(\mathrm{~s}, 1 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR $\delta 154.48,154.47,144.09 .140 .29 .133 .67,112.93$, 65.29. 62.48, 57.08: IR $\left(\mathrm{cm}^{-1}\right): 3418.2$. 2920.6, 2850.2 . 1761.6, 1597.7, 1582.3. 1518.6, 1474.3, 1413.9. 1342.2. 1199.5: HRFABMS calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}(\mathrm{M}+1)^{-}: 240.0542$. found: 240.0543 .
$+(R)$-Hydroxymethyl-5-(R)-methyl- N-(5-nitro-pyridin$\mathbf{2 - y l})$-2-oxazolidinone (7b2). The procedure was the same as the preparation of compound 7al. Oxazolidinone $\mathbf{6 b} \mathbf{2}$ (0.5 g .1 .36 mmol) was converted to the desired product 7 b 2 ($0.24 \mathrm{~g} .0 .95 \mathrm{mmol} .70 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 9.15$ (q. $J=1.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 8.48(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~m} . \mathrm{IH}) .4 .48(\mathrm{q}, J=4.2 \mathrm{~Hz} . \mathrm{IH})$. 3.97 (m. 2 H). 3.07 (t. $J=4.9 \mathrm{~Hz} .1 \mathrm{H}) .1 .54$ (d. $J=6.4 \mathrm{~Hz}$. $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 154.73,154.01 .143 .96,140.19,133.56$. $113.14,73.74,63.68 .62 .11,20.67$: IR $\left(\mathrm{cm}^{-1}\right): 3443.3$. $2982.4,2931.3,2254.4,1759.7 .1206 .3$. HRFABMS calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}(\mathrm{M}+1)^{+}: 254.0699$, found: 254.0698
[N-(5-Nitro-pyridin-2-yl)-2-oxo-oxazolidin-4-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester (8a2). The procedure was the same as the preparation of compound 8a1. Hydroxyoxazolidinone $7 \mathbf{a} 2$ (1.26 g. 5.27 nmnol) was converted to the desired product $8 \mathbf{a 2}$ (1.27 g .3 .26 nmol . 61%): ${ }^{1} \mathrm{H}$ NMR $\delta 8.96$ (d, $\left.J=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.11$ (dd. $J=9.2$. $2.5 \mathrm{~Hz}, \mathrm{IH}), 6.47(\mathrm{~d}, J=9.3 \mathrm{~Hz} .1 \mathrm{H}), 4.20(\mathrm{~mm} .5 \mathrm{H}), 3.84(\mathrm{~m}$. $6 \mathrm{H}), 1.34(\mathrm{q} . J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 160.78 .146 .67$. 144.41. 135.68. 134.43. $107.82 .71 .95(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 65.29$. $65.30(\mathrm{~d} . J=164.7 \mathrm{~Hz}), 62.69(\mathrm{dd}, J=8.7 .6 .8 \mathrm{~Hz}) .51 .74$. 52.57. 16.39 (dd, $J=5.9 .1 .5 \mathrm{~Hz}):{ }^{31} \mathrm{P}$ NM R $\delta 21.99$; IR $\left(\mathrm{cm}^{-1}\right): 3283.2 .2985 .2,2360.4,1608.3 .1335 .4,1025.9$: HRFABMS calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}(\mathrm{M}+\mathrm{I})^{-}: 390.0988$. found: 390.0986.
[5-(R)-Methyl- N-(5-nitro-pyridin-2-yl)-2-ox0-oxazolidin-4-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester ($\mathbf{8} \mathbf{b 2}$). The procedure was the same as the preparation of compound 8a1. Hydroxyoxazolidinone $7 \mathbf{7 b 2}$ (0.3 g . 1.19 mmol) was converted to the desired product $8 \mathrm{~b} 2(0.3 \mathrm{~g}, 0.74$ mmol. 62.2%). ${ }^{1} \mathrm{H}$ NMR $\delta 8.98$ (d, $\left.J=2.6 \mathrm{~Hz}, \mathrm{IH}\right), 8.13$ (dd. $J=2.8 .9 .2 \mathrm{~Hz}, 1 \mathrm{H}) .6 .44(\mathrm{~d} . J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) .4 .19(\mathrm{~m}, 6 \mathrm{H})$, $3.81(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .1 .22(\mathrm{~d} . J=6.4 \mathrm{~Hz}$. $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 161.02 .146 .50 .144 .47$. 135.78. 134.45. $111.42,73.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}) .66 .71 .65 .30(\mathrm{~d} . J=164.7$ $\mathrm{Hz}), 62.63(\mathrm{dd}, J=11.8,6.2 \mathrm{~Hz}), 55.3 \mathrm{I} .19 .86 .16 .44(\mathrm{~d} . J=$ $5.6 \mathrm{~Hz}):{ }^{31} \mathrm{P}$ NMR $\delta 21.79$; IR $\left(\mathrm{cm}^{-1}\right): 3303.5 .2978 .5$. 2919.7, $1606.4,1333.5,1293.0$. 1025.9: HRFABMS calcd for $\mathrm{C}_{15} \mathrm{H}_{2}=\mathrm{N}_{3} \mathrm{O}_{8} \mathrm{P}(\mathrm{M}+1)^{+}$: 404.1145 . found: 404.1140 .
[N-(5-Amino-pyridin-2-yl)-2-ox0-oxazolidin-4-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester (9a4). The procedure was the same as the preparation of compound 9a3. Oxazolidinone $8 \mathbf{a} 2(0.11 \mathrm{~g}, 0.28 \mathrm{mmol})$ was converted to the desired product $9 \mathrm{a} 4(0.05 \mathrm{~g} .0 .14 \mathrm{mmol} .50 \%)$: ${ }^{1} \mathrm{H}$ NMR $\delta 7.95$ (dd. $J=2.8,0.6 \mathrm{~Hz}, \mathrm{IH}), 6.93$ (dd. $J=8.7,2.8$ $\mathrm{Hz} .1 \mathrm{H}), 6.40(\mathrm{dd} . J=8.7 .0 .6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 4 \mathrm{H}) .3 .8(\mathrm{~m}$. $7 \mathrm{H}) .3 .48$ (s. 2H). 1.33 (m. 6H). ${ }^{13} \mathrm{C}$ NMR $\delta 152.18,138.02$. $134.09,133.41 .127 .69,109.85 .72 .81(\mathrm{~d} . J=8.6 \mathrm{~Hz}) .65 .22$ $(\mathrm{d} . J=164.3 \mathrm{~Hz}), 63.61 .62 .56(\mathrm{dd} . J=6.6 .3 .5 \mathrm{~Hz}), 54.00$. $16.48(\mathrm{~d} . J=5.3 \mathrm{~Hz})$: ${ }^{31} \mathrm{P}$ NMR $\delta 21.57$; IR $\left(\mathrm{cm}^{-1}\right): 3342.0$. 2925.4. 2361.4, 1622.8, 1501.3. 1233.2. 1018.23; HRFABMS calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \triangleq \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}(\mathrm{M}+1)^{+}: 360.1246$, found: 360.1248 .
[N-(5-Amino-pyridin-2-yl)-5-(R)-methyl-2-oxo-oxazo-lidin-4-(R)-yl-methoxymethyl]-phosphonic acid diethyl ester (9 b 4). The procedure was the same as the preparation of compound 9 a 3 . Oxazolidinone $\mathbf{8 b 2}(0.15 \mathrm{~g} .0 .37 \mathrm{mmol})$ was converted to the desired product $9 \mathrm{~b}+(0.1 \mathrm{~g}, 0.27 \mathrm{mmol}$. 83%). ${ }^{1} \mathrm{H}$ NMR $\delta 8.98$ (d, $\left.J=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right) .8 .13$ (dd, $J=2.8$. $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=9.1 \mathrm{~Hz} .1 \mathrm{H}), 4.15(\mathrm{~m} .6 \mathrm{H}), 3.81(\mathrm{~m}$. $4 \mathrm{H}) .1 .72(\mathrm{~s} .1 \mathrm{H}) .1 .34(\mathrm{q} . J=7.1 \mathrm{~Hz} .6 \mathrm{H}) .1 .22(\mathrm{~d} . J=6.4$ $\mathrm{Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 161.12 .146 .75 .145 .42 .136 .02(\mathrm{~d}, J=$ $20.4 \mathrm{~Hz}), 132.74(\mathrm{~d}, J=13.6 \mathrm{~Hz}) .105 .77 .73 .44,66.77$.
$63.33(\mathrm{~d} . J=164.3 \mathrm{~Hz}), 62.64(\mathrm{dd}, J=11.7,6.8 \mathrm{~Hz}) .55 .17$, 19.88. $16.47(\mathrm{~d}, J=4.3 \mathrm{~Hz}):{ }^{31} \mathrm{P}$ NMR $\delta 21.79$: IR $\left(\mathrm{cm}^{-1}\right)$: $3290.0,2993.0$. 2912.0. 2360.4, 1606.4, 1293.0, 1025.9: HRFABMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}(\mathrm{M}+1)^{+}: 374.1404$, found: 374.1401 .
[N-(5-Amino-pyridin-2-yl)-2-ox0-oxazolidin-4-(R)-yl-methoxymethyl]-phosphonic acid (10at). The procedure was the same as the preparation of compound $\mathbf{1 0 a 3}$. Phosphonated oxazolidinone $9 \mathrm{at}(0.07 \mathrm{~g}, 0.19 \mathrm{mmol}$) was converted to the desired product $10 \mathrm{at}(0.04 \mathrm{~g}, 0.13 \mathrm{mmol}$, $68.4 \%):{ }^{1} \mathrm{H}$ NMR $\delta 8.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .8 .41(\mathrm{bs} .1 \mathrm{H})$, $8.16(\mathrm{~d} . J=8.6 \mathrm{~Hz}, \mathrm{IH}) .6 .79(\mathrm{~d}, J=9.3 \mathrm{~Hz} .1 \mathrm{H}), 4.30(\mathrm{bs}$, 1H). $3.54(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 163.29. 160.29. 145.21, 134.59. 132.51. 110.11. 71.58 (d. $J=10.5 \mathrm{~Hz}$). 6.83 (d. $J=$ $159.2 \mathrm{~Hz}), 60.21,48.79,{ }^{31} \mathrm{P}$ NMR $\delta 17.10 ;$ IR $\left(\mathrm{cm}^{-1}\right)$: 3418.2 , $2253.4,1660.41$. 1294, 1025.9, 825.38, 763.67: HRFABMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}(\mathrm{M}+1)^{+}: 304.0620$. found: 304.0624 .
[N-(5-Amino-pyridin-2-yl)-5-(R)-methyl-2-oxo-oxazo-lidin- $+(R)$-yl-methoxymethyl]-phosphonic acid (10b4). The desired product $10 \mathrm{~b} 4(0.08 \mathrm{~g}, 0.25 \mathrm{mmol}, 78 \%)$ was prepared from the phosphonated oxazolidinone $9 \mathrm{~b} 4(0.12 \mathrm{~g}$. 0.32 mmol) following the same procedure as the compound 10a3: ${ }^{1} \mathrm{H}$ NMR $\delta 8.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d} . J=7.8$ $\mathrm{Hz} . \mathrm{lH}), 6.73$ (d. $J=9.4 \mathrm{~Hz}, \mathrm{lH}) .4 .28$ (bs. lH) , 3.94 (bs, $1 \mathrm{H}) .3 .6 \mathrm{I}(\mathrm{m} .4 \mathrm{H}), 1.02(\mathrm{~d}, J=6.2 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR δ $161.73,146.62 .134 .19,131.67,108.86,95.57,71.43(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}), 67.67,65.54,64.32 .19 .84:{ }^{31} \mathrm{P}$ NMR δ 16.97: IR $\left(\mathrm{cm}^{-1}\right): 3433.6 .2254 .3 .2127 .1,1651.7,1025.9$. 1003.8: HRFABMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}(\mathrm{M}+1)^{+}$: 318.0777, found: 318.0771 .

Acknowledgement. This work was supported by a grant No. RTI05-01-02 from the Regional Technology Innovation Program of the Ministry of Commerce. Industry and Energy (MOCIE).

References

1. For recent reviews. see: (a) Brickner. S. J. Cmm: Pham. Des. 1996. 2, 175. (b) Barbachyn. M. R.; Ford. C. W. Angew. Chem. Iht. Ed. 2003. 42, 2010. (c) Hutchinson. D. K. Cwr: Top. Med. Chem. 2003. 3. 1021. (d) Nilus, A. M. Cur: Opin. Invest. Drugs 2003. t. 149 .
2. Renslo. A. R.: Gao. H.: Taishankar. P.: Venkatachalam. R.: Gómez. M.: Blais. T.: Huband. M.: Prasad. J. V. N. V.: Gordeeva. M. F. Bioorg Med. Chem. Lett. 2006. 16. 1126.
3. (a) Slee. A. M.: Wuonola, M. A.: McRiplev: R. J.: Zajac. I.; Zawada. M. J.: Batholomew, P. T.: Gregory, W. A.: Forbes, M. Abstracts of 27 th Interscience Conference on Antimicrobial Agents and Chemotherapr. New York. Oct. 4-7. 1987: abstract No. 244. (b) Brickiter. S. J.: Hutchinson. D. K.: Barbachyt1. M. R.: Manninen, P. R.; Ulanowicz. D. A.: Garmon, S. A.: Grega. K. C.; Hendges. S. K.; Toops, D. S.; Ford. C. W.: Zurenko. G. E. J. Med. Chem. 1996, 39.673.
4. Gonzales. R. D.: Schreckenberger. P. C.: Graham. M. B.: Kelkar. S.: DenBesten. K.: Quitun. T. P. Lancet 2001. 357. 1179.
5. Tsiodras. S.: Gold. H. S.: Sakoulas. G.: Eliopoulas. G. M.: Wennerstein. C.; Venkatraman, L.: Moellering. R. C., Jr.: Ferro. M. J. Lancet 2001, $358,207$.
6. Tsiodras, S.: Gold. H. S.; Sakoulas. G.: Eliopoulos, G. M.; Wennersten. C.: Venkataraman. L.: Moellering. R. C.: Ferraro. M.
J. Lancet 2001. 358. 207.
7. Jung. K. Y.: Hwang. J. M. Bull. Korean Chem. Soc. 2004. 25. 1326.
8. (a) Jung. K. Y:' Lee. M. Y.', McClure, C. K. Phosphorus. Sulfur. and Sificon 1999, 147, 141. (b) MeClure. C. K. Hausel, R. C.: Hansen, K. B.: Grote. C. W.: Jung. K. Y. Phosphorns. Sulfur and Silicon 1996. Mh. 63. (c) McClure, C. K: Jung. K. Y. J. Org. Chem. 1991. 56. 867. (d) Jung. K. Y.: Lee. M. Y. J. Ind. \& Eng. Chem. 1999. 5. 224.
9. (a) Herweh, J. E.: Kauftman. W. Tetrahedron Lett. 1971, 809. (b)

Cardillo. G: Orena. M.: Sandri. S. J. Org. Chen. 1986. 5l. 713: (c) Gregory. W. A.: Brittelli. D. R.: Wang. C. L. T.: Kezar. H. S.: Carlson. R. K.: Park. C. H.: Corless. P. F.: Miller. S. J.: Rajagopalan, P.: Wuonola, M. A.: McRipley. R. J.; Eberly, V. S.; Slee. A. M.: Forbes. M. J. Ifed. Chem. 1990. 33, 2569.
10. (a) Sibi. M. P.; Renhowe, P. A. Tetrahedron Lett. 1990. 31, 7407. (b) Sibi. M. P.: Rutherford. D.: Renhowe. P. A.: Li. B. J. Am. Chent. Soc. 1999. 121. 7509 . (c) Neri. C.: Williams. J. M. J. Ads: Swh. Catal. 2003. 3+5. 835.
11. Jung. M. E.: Jung. Y. H. Tebraedron Lett. 1989, 30.6637.

