DOI QR코드

DOI QR Code

Apoptosis Induced by Polyethylenimine/DNA Complex in Polymer Mediated Gene Delivery

  • Lee, Min-Hyung (Department of Bioengineering, College of Engineering, Hanyang University,)
  • Published : 2007.01.20

Abstract

Polyethylenimine (PEI) has been widely investigated for delivery of DNA into cells. It was previously reported that there were at least two types of cytotoxicity in PEI-mediated gene delivery, immediate and delayed toxicities. PEI-mediated gene delivery protocols use net cationic complexes with an excess of PEI to maintain equilibrium between the complexed and dissociated forms in solution. In this study, toxicity of free PEI or PEI/ DNA complex was investigated. Human embryonic kidney 293 cells were incubated with free PEI or PEI/DNA complex for 4 hrs. Then, the cells were analyzed at 6, 24, 48, and 96 hrs after the incubation. In MTT assay, the viability of the cells incubated with PEI/DNA complex was continuously decreased with time, while that of the cells incubated with free PEI was not. On the contrary, the expression level of the luciferase gene increased gradually along with time. Release of DNAs from the complexes for transcription produces free PEIs in the cells. This process may proceed slowly due to high charge density of PEI and may be related to delayed toxicity. In addition, apoptotic cells were observed only in the cells incubated with the PEI/DNA complex from 24 hrs after the incubation. The results suggest that PEI/DNA complex contributes to the delayed toxicity by inducing apoptosis and that the delayed toxicity may be related to decomplexation of the complexes in the cells.

Keywords

References

  1. Wilson, J. M. N. Engl. J. Med. 1996, 334, 1185 https://doi.org/10.1056/NEJM199605023341809
  2. Han, S.; Mahato, R. I.; Sung, Y. K.; Kim, S. W. Mol. Ther. 2000, 2, 302 https://doi.org/10.1006/mthe.2000.0142
  3. Lee, M.; Kim, S. W. Pharm. News 2002, 9, 407
  4. Kabanov, A. V.; Kabanov, V. A. Bioconjug. Chem. 1995, 6, 7
  5. Lee, M.; Kim, S. W. Pharm. Res. 2005, 22, 1 https://doi.org/10.1007/s11095-004-9003-5
  6. Choi, J. S.; Choi, M. J.; Ko, K. S.; Rhee, B. D.; Pak, Y. K.; Bang, I. S.; Lee, M. Bull. Kor. Chem. Soc. 2006, 27, 1335 https://doi.org/10.5012/bkcs.2006.27.9.1335
  7. Kang, H. C.; Lee, M.; Bae, Y. H. Crit. Rev. Eukaryot. Gene Expr. 2005, 15, 317 https://doi.org/10.1615/CritRevEukarGeneExpr.v15.i4.30
  8. Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. Proc. Natl. Acad. Sci. USA 1995, 92, 7297
  9. Boussif, O.; Zanta, M. A.; Behr, J. P. Gene Ther. 1996, 3, 1074
  10. Benns, J. M.; Maheshwari, A.; Furgeson, D. Y.; Mahato, R. I.; Kim, S. W. J. Drug Target 2001, 9, 123 https://doi.org/10.3109/10611860108997923
  11. Sagara, K.; Kim, S. W. J. Control. Release 2002, 79, 271 https://doi.org/10.1016/S0168-3659(01)00555-7
  12. Suh, W.; Han, S. O.; Yu, L.; Kim, S. W. Mol. Ther. 2002, 6, 664 https://doi.org/10.1016/S1525-0016(02)90721-5
  13. Ogris, M.; Brunner, S.; Schuller, S.; Kircheis, R.; Wagner, E. Gene Ther. 1999, 6, 595
  14. Lim, Y. B.; Han, S. O.; Kong, H. U.; Lee, Y.; Park, J. S.; Jeong, B.; Kim, S. W. Pharm. Res. 2000, 17, 811 https://doi.org/10.1023/A:1007552007765
  15. Fischer, D.; Bieber, T.; Li, Y.; Elsasser, H. P.; Kissel, T. Pharm. Res. 1999, 16, 1273 https://doi.org/10.1023/A:1014861900478
  16. Godbey, W. T.; Wu, K. K.; Mikos, A. G. Biomaterials 2001, 22, 471 https://doi.org/10.1016/S0142-9612(00)00203-9
  17. Kim, Y. H.; Park, J. H.; Lee, M.; Kim, Y. H.; Park, T. G.; Kim, S. W. J. Control. Release 2005, 103, 209 https://doi.org/10.1016/j.jconrel.2004.11.008
  18. Lee, M.; Rentz, J.; Han, S. O.; Bull, D. A.; Kim, S. W. Gene Ther. 2003, 10, 585 https://doi.org/10.1038/sj.gt.3301938

Cited by

  1. Cell line specific control of polyethylenimine-mediated transient transfection optimized with “Design of experiments” methodology vol.28, pp.1, 2011, https://doi.org/10.1002/btpr.715
  2. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0188347
  3. Evaluating polyethyleneimine/DNA nanoparticles-mediated damage to cellular organelles using endoplasmic reticulum stress profile pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2017.1304406
  4. Polyamidoamine (PAMAM) Dendrimers Modified with Cathepsin-B Cleavable Oligopeptides for Enhanced Gene Delivery vol.9, pp.12, 2017, https://doi.org/10.3390/polym9060224
  5. Macrocycle-wrapped polyethylenimine for gene delivery with reduced cytotoxicity vol.6, pp.5, 2018, https://doi.org/10.1039/C8BM00022K
  6. Generation of a Focused Poly(amino ether) Library: Polymer-mediated Transgene Delivery and Gold-Nanorod based Theranostic Systems vol.2, pp.12, 2007, https://doi.org/10.7150/thno.4492
  7. Evaluation and comparison of cytotoxicity, genotoxicity, and apoptotic effects of poly-L-lysine/plasmid DNA micro- and nanoparticles vol.38, pp.8, 2019, https://doi.org/10.1177/0960327119846924